Jump to content

Recommended Posts

  • Publishers
Posted

2 min read

Sols 4450-4451: Making the Most of a Monday

A grayscale, extreme wide-angle image of brightly lit Martian terrain shows an exaggerated, curved horizon in the distance, with a large mesa rising in the top center of the image, and another on the left side. The entire field between that and the image foreground is covered in rocks of varying sizes poking out of the ground at various angles, with very few patches of flat ground. Most of the rocks are very light gray, almost white, compared to the gray of the soil. The Curiosity rover is casting a shadow at the bottom of the image, and one of its wheels is faintly visible in the shadow in the lower right corner, atop some rocks.
NASA’s Mars rover Curiosity acquired this image of its brightly lit workspace and its right-front wheel in the shadows, perched on some tall rocks. The rover used its Right Front Hazcam (Front Hazard Avoidance Camera) to capture the image on sol 4449 — or Martian day 4,449 of the Mars Science Laboratory mission — Feb. 10, 2025, at 10:44:45 UTC.
NASA/JPL-Caltech

Earth planning date: Monday, Feb. 10, 2025

Last Saturday around 20:00 Pacific Standard Time I saw a 22-degree halo encircling our mostly-full Moon and Mars; an entire planet hanging in the sky between our Moon and the atmospheric phenomenon. As I took in the view I wondered what our rover was doing at that moment… turns out the Sun had just risen over Gale crater and Curiosity was still asleep, waiting for her alarm to go off in about 2.5 hours for another full day of science. 

She wouldn’t start the weekend’s drive until Monday morning about 1:30, while I was still asleep waiting for my alarm to sound at 5:15. The drive’s data arrived on Earth about 5:30, and told us we drove until our time-of-day limit for driving — stopping about 36 meters (about 118 feet) away from Friday’s location. Unfortunately, our right-front wheel was shown to be perched on some tall rocks and we couldn’t quantify the drop risk if we unstowed the arm. We decided to play it safe and keep the arm stowed instead.

Today’s two-sol plan would normally be in “nominal” sols — meaning we’d get a full day of science and a drive on the second sol — but due to some DSN downtime on Earth we moved our drive to the first sol, therefore switching to “restricted” sols a bit earlier than usual after our last soliday. Even though we couldn’t plan contact science, we’re making the most of our plan with almost 90 minutes of remote sensing. Mastcam will take an approximately 24-frame stereo mosaic of Wilkerson butte to the north, and ChemCam will shoot their laser at a rock in our workspace named “Carbon Canyon,” as well as three separate RMI mosaics! We’ll then attempt to drive until our time-of-day limit of about 15:00 local Gale time, hopefully getting us to a more stable spot on Wednesday for contact science. The second sol contains our usual dust-devil surveys with Navcam, atmospheric opacity measurements with Mastcam, and a blind LIBS on a piece of bedrock the rover chooses autonomously.

Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems

Share

Details

Last Updated
Feb 11, 2025

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 2 min read
      Sols 4458-4460: Winter Schminter
      NASA’s Mars rover Curiosity captured this image of the Texoli butte, a Martian landmark about 525 feet (160 meters) tall, with many layers that scientists are studying to learn more about the formation of this region of the Red Planet. The butte is on the 3-mile-high Mount Sharp, inside Gale Crater, where Curiosity landed and has been exploring since 2012. The rover acquired this image using its Left Navigation Camera on sol 4456, or Martian day 4,456 of the Mars Science Laboratory mission, on Feb. 17, 2025, at 17:51:56 UTC. NASA/JPL-Caltech Earth planning date: Tuesday, Feb. 18, 2025
      During today’s unusual-for-MSL Tuesday planning day (because of the U.S. holiday on Monday), we planned activities under new winter heating constraints. Operating Curiosity on Mars requires attention to a number of factors — power, data volume, terrain roughness, temperature — that affect rover operability and safety. Winter means more heating to warm up the gears and mechanisms within the rover and the instruments, but energy that goes to heating means less energy for science observations. Nevertheless, we (and Curiosity) were up to the task of balancing heating and science, and planned enough observations to warm the science team’s hearts. 
      We fit in DRT, APXS, and MAHLI on two different bedrock targets, “Chumash Trail” and “Wheeler Gorge,” which have different fracturing and layering features. In the workspace, ChemCam targeted a clean vertical exposure of layered bedrock at “Sierra Madre” and a lumpy-looking patch of resistant nodules at “Chiquito Basin.” 
      The topography of the local terrain and our end-of-drive position after the weekend fortuitously lined up to give us a view of an exposure of the Marker Band, which we first explored on the other side of Gediz Vallis Ridge. Having a view of another exposure of this distinctive horizon helps give us further insight into its origin, so we included both RMI and Mastcam mosaics of the exposure. 
      Documenting a feature that, unlike the Marker Band, has been and will be in our sights for a long time — “Texoli” butte (pictured above) — was the goal of additional Mastcam and ChemCam imaging. Observations of potential sedimentary structures on the flank of Texoli motivated acquisition of an RMI mosaic, and a chance to capture structures along its southeast face inspired a Mastcam mosaic. Good exposures of additional nearby bedrock structures at “Mount Lukens” and “Chantry Flat” drew the eye of Mastcam, while another small mosaic focused on the kind of linear troughs in the sand we often see bordering bedrock slabs. Environmental observations included Navcam cloud and dust-devil movies, Mastcam observations of dust in the atmosphere, and REMS and RAD measurements spread across the three sols of the plan.
      Written by Michelle Minitti, Planetary Geologist at Framework
      Share








      Details
      Last Updated Feb 20, 2025 Related Terms
      Blogs Explore More
      3 min read Cookies, Cream, and Crumbling Cores


      Article


      3 days ago
      2 min read Sols 4454-4457: Getting Ready to Fill the Long Weekend with Science


      Article


      4 days ago
      2 min read Sols 4452-4453: Keeping Warm and Keeping Busy


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 2 min read
      Sols 4454-4457: Getting Ready to Fill the Long Weekend with Science
      NASA’s Mars rover Curiosity acquired this image, which includes the pyramid-shaped rock at left in the photo, the science target dubbed “Pyramid Lake,” using its Left Navigation Camera. The rover acquired the image on sol 4452, or Martian day 4,452 of the Mars Science Laboratory mission, on Feb. 13, 2025, at 14:22:06 UTC. NASA/JPL-Caltech Earth planning date: Friday, Feb. 14, 2025
      Curiosity is continuing to make progress along the strategic route, traversing laterally across the sulfate (salt) bearing unit toward the boxwork structures. The team celebrated the completion of another successful drive when we received the downlink this morning, and then we immediately got to work thinking about what’s next. There is a holiday in the United States on Monday, so instead of the typical three-sol weekend plan, we actually planned four sols, which will set us up to return to planning next Tuesday.
      The first sol of the plan focuses on remote sensing, and we’ll be taking several small Mastcam mosaics of features around the rover. One of my favorite targets the team picked is a delightfully pointy rock visible toward the left of the Navcam image shown above. The color images we’ll take with Mastcam will give us more information about the textures of this rock and potentially provide insight into the geologic forces that transformed it into this comical shape. The team chose what I think is a very appropriate name for this Martian pyramid-shaped target — “Pyramid Lake.” The terrestrial inspiration behind this name is a human-made reservoir (lake) near Los Angeles with a big (also human-made) pyramidal hill in it.
      On the second sol of the plan, we’ll use the instruments on Curiosity’s arm to collect data of rock targets at our feet, including “Strawberry Peak,” a bumpy piece of bedrock, “Lake Arrowhead,” a smooth piece of bedrock, and “Skyline Trail,” a dark float rock. ChemCam will also collect chemical data of Skyline Trail, “Big Tujunga” — which is similar to Strawberry Peak — and “Momyer.” We’ll also take the first part of a 360-degree color mosaic with Mastcam!
      In the third sol of the plan, we’ll complete the 360-degree mosaic and continue driving to the southwest along our strategic route. The fourth sol is pretty quiet, with some atmospheric observations and a ChemCam AEGIS. Atmospheric observations are additionally sprinkled throughout other sols of the plan. This time of year we are particularly interested in studying the clouds above Gale crater!
      I’m looking forward to the nice long weekend, and returning on Tuesday morning to see everything Curiosity accomplished.
      Written by Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
      Share








      Details
      Last Updated Feb 17, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4452-4453: Keeping Warm and Keeping Busy


      Article


      3 days ago
      2 min read Sols 4450-4451: Making the Most of a Monday


      Article


      5 days ago
      3 min read Sols 4447–4449: Looking Back at the Marker Band Valley


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 2 min read
      Sols 4452-4453: Keeping Warm and Keeping Busy
      NASA’s Mars rover Curiosity acquired this image of the science targets before it, including “Catalina Island,” the flat rock at image center, using its Left Navigation Camera. The rover captured the image on sol 4450 — or Martian day 4,450 of the Mars Science Laboratory mission — on Feb. 11, 2025, at 13:11:14 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Feb. 12, 2025
      I woke up this morning to my weather app telling me it felt like minus 15° C (5°F) outside. On days like this, it can take me a little longer to get myself up and out into the world. Curiosity has a similar problem — as we head toward winter and it gets colder and colder in Gale Crater, Curiosity has to spend more time warming up to do things like driving and all our good science. I’ve also been watching a couple winter storms that are expected in the next few days here in Toronto. Luckily, Curiosity doesn’t have to deal with snowstorms, and our drive in the last plan went ahead as planned and put us in a good position to go ahead with contact science today, a relief after having to forego it on Monday. 
      The contact science location that the geology team chose is called “Catalina Island,” the flat rock you can see in almost the center of the image above. As you can likely also see above, there’s a whole jumble of rocks in that image, and Mastcam and ChemCam have picked out a couple others to take a look at. These are “Point Dume,” which will be the target of ChemCam’s laser spectrometer, and “Whittier Narrows,” on which Mastcam will image some linear features. Mastcam and ChemCam are also turning their gazes further afield for Mastcam targets “Cleghorn Ridge,” “Cuyamaca Peak,” “Kratka Ridge,” and two long-distance ChemCam mosaics of the top of the Wilkerson butte and a spot a little further down known as “Pothole Trail.”
      Much like I’m keeping an eye out the window on the changing weather here, Curiosity is also continuing to keep an eye on the environment in Gale Crater. Even though it’s not the dusty season, we continue to monitor the dust around us and in the atmosphere with a dust-devil survey and a tau. But we’re especially interested in what the clouds are up to right now, which we’re checking in on with our normal zenith and suprahorizon movies, and our cloud-season-only Phase Function Sky Survey. This is a series of movies covering the whole sky that we can use to determine how sunlight interacts with the individual water-ice crystals in the clouds.
      Written by Alex Innanen, Atmospheric Scientist at York University
      Share








      Details
      Last Updated Feb 14, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4450-4451: Making the Most of a Monday


      Article


      2 days ago
      3 min read Sols 4447–4449: Looking Back at the Marker Band Valley


      Article


      3 days ago
      4 min read Sols 4445–4446: Cloudy Days are Here


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 3 min read
      Sols 4447–4449: Looking Back at the Marker Band Valley
      NASA’s Mars rover Curiosity captured this image of its workspace using the rover’s Rear Hazard Avoidance Camera (Rear Hazcam) on sol 4447 — or Martian day 4,447 of the Mars Science Laboratory mission — on Feb. 8, 2025, at 13:54:13 UTC. NASA/JPL-Caltech Earth planning date: Friday, Feb. 7, 2025
      We are continuing our merry way alongside “Texoli” butte, heading toward the boxworks feature in the distance, our next major waypoint. This is a series of large-scale ridges, which appear from orbital data to be a complex fracture network.  
      Of course, we don’t actually expect to get there until late fall 2025, at the earliest. Our drives are long right now (the weekend plan has a 50-meter drive, or about 164 feet) but we are still taking the time to document all of the wonderful geology as we go, and not just speeding past all of the cool things! 
      As Conor mentioned in Wednesday’s blog, power is becoming a challenge right now. Those of us in the northern hemisphere might be thinking (eagerly anticipating!) about the return of Spring but Mars is heading into colder weather, meaning we need to use more power for warming up the rover. However, we are also in a very interesting cloud season (as Conor mentioned), so the environmental theme group (ENV) are keen to do lots of imaging right now. This means very careful planning and negotiating between ENV and the geology theme group (GEO) to make the most of the power we do have. Luckily, this plan has something for everyone. 
      The GEO group was handed a weekend workspace containing a jumble of rocks — some layered, some not. None of the rocks were very large but we were able to plan APXS and MAHLI on a brushed rock surface at “Aliso Canyon” and on a small, flat unbrushed target, “Bridge to Nowhere,” close to the rover. ChemCam will use the LIBS laser to shoot three bedrock targets, sampling regular bedrock at “Newcomb,” some cracked bedrock at “Devore” and some of the more layered material at “Rubio Canyon.” Mastcam will document the ChemCam LIBS targets. In addition to the cloud imaging, we have lots of other imaging in this plan. We are in position right now to look back down at the “Marker Band Valley,” which we first entered almost a thousand sols ago! Before we go too much further along the side of Texoli butte and lose sight of the Marker Band Valley for some time, both ChemCam and Mastcam will take advantage of this to image the Marker Band Valley and the “Marker Band.” Other images include ChemCam remote images of cap rocks in the distance and two Mastcams of near-field (i.e., close to the rover) troughs.
      Written by Catherine O’Connell-Cooper, Planetary Geologist at University of New Brunswick
      Share








      Details
      Last Updated Feb 10, 2025 Related Terms
      Blogs Explore More
      4 min read Sols 4445–4446: Cloudy Days are Here


      Article


      4 days ago
      2 min read Sols 4443-4444: Four Fours for February


      Article


      5 days ago
      3 min read Persevering Through Science


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 4 min read
      Sols 4445–4446: Cloudy Days are Here
      NASA’s Mars rover Curiosity acquired this image showing its left-front wheel and the large rock it ran into (visible at lower left); another rock blocked its right-front wheel (the wheel is visible at the right edge), so the rover paused its drive to await instructions from the mission team on Earth. Curiosity captured the image using its Front Hazard Avoidance Camera (Front Hazcam) on sol 4444, or Martian day 4,444 of the Mars Science Laboratory mission, on Feb. 5, 2025, at 08:38:01 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Feb. 5, 2025
      Overnight before planning today, Mars reached a solar longitude of 40 degrees. The solar longitude is how we like to measure where we are in a Mars year. Each year starts at 0 degrees and advances to 360 degrees at the end of the year. For those of us on the Environmental Science (ENV) team, 40 degrees is a special time as it marks the beginning of our annual Aphelion Cloud Belt (ACB) observation campaign. During this time of year, the northern polar ice cap is emerging into the sunlight, causing it to sublimate away and release water vapor into the atmosphere. At the same time, the atmosphere is generally colder, since Mars is near aphelion (its furthest distance from the Sun). 
      Together, these two factors mean that Mars’ atmosphere is a big fan of forming clouds during this part of the year. Gale is right near the southern edge of the ACB, so we’re starting to take more cloud movies to study how the ACB changes during the cloudy season. (Jezero Crater, home to Perseverance, is much closer to the heart of the ACB, so keep an eye on their Raw Images page over the next several months as well.
      The drive from Monday’s plan ended early, after just about 4 meters instead of the 38 meters that had been planned (about 13 feet vs. 125 feet). We initially thought this might have been because our left-front wheel ran into the side of a large rock (see the image above), but after we got our hands on the drive data, it turned out that the steering motor on the right front wheel indicated that a rock was in the way on that side too, so Curiosity stopped the drive to await further instruction from Earth. This is a well-understood issue, so we should be back on the road headed west today.
      The cold weather is still creating power challenges, so we had to carefully prioritize our activities today. Despite the drive fault, we received the good news that it was safe to unstow the arm, so we were able to pack in a full set of MAHLI, APXS, and DRT activities. Before that, though, we start as usual with some remote sensing activities, including ChemCam LIBS and Mastcam observations of “Beacon Hill” (some layered bedrock near the rover) and a ChemCam RMI mosaic of the upper portion of Texoli butte.
      After taking a 3½-hour nap to recharge our batteries, we get into the arm activities. These start off with some MAHLI images of the MAHLI and APXS calibration targets, then continue with MAHLI and APXS observations of “Zuma Canyon.” This is followed by DRT, APXS, and MAHLI activities of some bedrock in our workspace, “Bear Canyon.” Although we then take another short nap, we don’t yet stow the arm as we have a pair of lengthy post-sunset APXS integrations. The arm is finally stowed about an hour and a half before midnight.
      The second sol of this plan begins with some more remote sensing activities, starting with ChemCam LIBS on “Mission Point”. This is followed by a series of Mastcam images of “Crystal Lake” (polygonal fractures in the bedrock), “Stockton Flat” (fine lamination in the bedrock), “Mount Waterman,” and Mission Point. We then finish with some ENV activities, including a Mastcam tau and Navcam line-of-sight to measure dust in the atmosphere and a Navcam cloud movie. This plan ends with a (hopefully!) lengthy drive west and many hours asleep to recharge our batteries as much as possible before planning starts again on Friday. Of course, I would be remiss if I didn’t mention that REMS, RAD, and DAN continue to diligently monitor the environment throughout this plan.
      Written by Conor Hayes, Graduate Student at York University
      Share








      Details
      Last Updated Feb 06, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4443-4444: Four Fours for February


      Article


      19 hours ago
      3 min read Persevering Through Science


      Article


      3 days ago
      3 min read Sols 4441-4442: Winter is Coming


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...