Jump to content

Recommended Posts

  • Publishers
Posted
Elizabeth Tammi, a woman with glasses and long blonde hair, smiles at the camera for a selfie.
“I’m hopeful anyone, regardless of their scientific background, could read a Hubble post and understand the gist of it and be interested in it,” said Elizabeth Tammi, social media lead for the Hubble Space Telescope. “I also read our stories with the eye of the potential audience member: What are they going to care about? What is going to bring them into this story? What is going to make them want to read more?”
Credits: Courtesy of Elizabeth Tammi

Name: Elizabeth Tammi
Title: Hubble Space Telescope Social Media Lead
Formal Job Classification: Communications Specialist
Organization: Hubble Space Telescope Operations (Code 441)

What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?

I am the social media lead for the Hubble Space Telescope mission at Goddard. In short, Hubble is an orbiting observatory that’s been in low-Earth orbit for more than 30 years. It’s one of NASA’s flagship missions, probably one of its most iconic missions. Hubble has shaped our understanding of how we imagine the universe — visually how we think about it.

I run Hubble’s Twitter, Facebook, Instagram, and Flickr, along with various other multimedia and communications tasks. We’re a very close-knit team, so we collaborate a lot, both within our team, and with other missions across the agency as well.

I’m primarily focused on social media and figuring out how are we going to share our news. On any given day, I might also be working on a script, editing news releases, or working with other accounts on social media campaigns. It’s different every day, which I really like.

What is your educational background?

I went to Mercer University, which is in Macon, Georgia. I graduated in 2020 with a degree in journalism and creative writing. There, they have a great program called the Center for Collaborative Journalism, which allowed us to work in newsrooms for academic credit. That was really useful, especially in this field, getting that hands-on experience and getting published from my freshman year on. I was eventually able to intern at Goddard the summer before my senior year. I really don’t think that would have been possible if I hadn’t had the audio production experience that Mercer allowed me to get, along with just all aspects of journalism, media, and communications.

Elizabeth Tammi, a woman with glasses and long blonde hair, stands at a table with printed Hubble flyers.
“Hubble is one of NASA’s flagship missions, probably one of its most iconic missions,” said Elizabeth Tammi, social media lead for the Hubble Space Telescope. “Hubble has shaped our understanding of how we imagine the universe — visually how we think about it.”
Credits: Courtesy of Elizabeth Tammi

How does your writing experience contribute to your role with Hubble?

I know how to write accessibly and in a straightforward manner. I’m hopeful anyone, regardless of their scientific background, could read a post and understand the gist of it and be interested in it. That’s the goal. I try to come up with interesting turns of phrase when I can. I also read our stories with the eye of the potential audience member: What are they going to care about? What is going to bring them into this story? What is going to make them want to read more?

Outside work, you’ve written and published books. What inspired you to decide to write?

There’s not a day I can remember where I wasn’t absolutely infatuated with books. I think my parents read to me long before I could even understand them. It was just always such a huge part of my life — and I loved, loved, loved reading. When I realized that actual people wrote books, then I knew I wanted to write. To be clear, I didn’t take real steps toward that until I was about 15, 16-ish years old, because I guess in my mind, I still had this idea that authors were more than human.

I’ve since had two novels published. Both are in the fantasy genre and earned complimentary reviews; my second novel even earned a Moonbeam Children’s Book Award.

Elizabeth Tammi, a woman with glasses and long blonde hair, smiles and waves at the camera in this still image from a video.
“I know it can be intimidating, to think about NASA as a place to intern,” said Hubble Space Telescope social media lead Elizabeth Tammi. “If you have any interest in space, I think that’s the most important part: People who are passionate and interested in our space program.”
Credits: Courtesy of Elizabeth Tammi

What do you most enjoy about sharing the Hubble story? 

I think my favorite part is reading the comments that we get from the public, just because everyone has been so supportive of the telescope. Social media can put on display the best and worst aspects of humanity. It’s very nice to see this supportive corner of the Internet.

So far, what I’ve really enjoyed was our “Deep Field Week” social media campaign, which was around the 25th anniversary of the Hubble Deep Field image . To the unaided eye, this was a seemingly empty patch of sky. Hubble revealed it has countless galaxies. It was a really staggering finding and definitely was a huge cultural shift in how we think about our universe.

Previously, you were a NASA intern from the Summer of 2019 to May 2020. How has that experience shaped your current role?

It was absolutely vital. I don’t think I would be here in this position without that internship experience. It was the summer before my senior year of college. I got to go up to Goddard for summer 2019 and I was working primarily as an audio production intern, though the internship afforded me the opportunity to contribute to the newsroom’s work overall.

I worked with Katie Atkinson, who I also went to college with, and we got to work on the 50th anniversary of the Apollo 11 mission. One of my primary tasks that summer was working on an oral history campaign tied to Apollo 11’s 50th anniversary . We encouraged people from all over to send in audio accounts of what they remember experiencing when Apollo 11 landed on the Moon in 1969. Or, if they didn’t remember seeing it as it happened, how did the landing affect them and their view of the world, or their career aspirations, or if they have family stories tied to Apollo.

If I could describe my NASA experience with a book title, it would be the term “Galaxy Brain.” It’s when you have a normal thought but then you think harder, and it gets bigger. From the idea of constantly feeling mind-blown by the work that’s going on around me to being part of it makes me feel, “Oh my gosh!” This “Galaxy Brain” imagery symbolizes the enormous magnitude of everything that is interesting and mysterious. It’s just something that’s constantly engaging.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

By Elissa Fielding
NASA’s Goddard Space Flight Center, Greenbelt, Md.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Captures a Star’s Swan Song
      This NASA/ESA Hubble Space Telescope image features the planetary nebula Kohoutek 4-55. ESA/Hubble & NASA, K. Noll The swirling, paint-like clouds in the darkness of space in this stunning image seem surreal, like a portal to another world opening up before us. In fact, the subject of this NASA/ESA Hubble Space Telescope image is very real. We are seeing vast clouds of ionized atoms and molecules, thrown into space by a dying star. This is a planetary nebula named Kohoutek 4-55, a member of the Milky Way galaxy situated just 4,600 light-years away in the constellation Cygnus (the Swan).
      Planetary nebulae are the spectacular final display at the end of a giant star’s life. Once a red giant star has exhausted its available fuel and shed its last layers of gas, its compact core will contract further, enabling a final burst of nuclear fusion. The exposed core reaches extremely hot temperatures, radiating ultraviolet light that energizes the enormous clouds of gas cast off by the star. The ultraviolet light ionizes atoms in the gas, making the clouds glow brightly. In this image, red and orange indicate nitrogen, green is hydrogen, and blue shows oxygen. Kohoutek 4-55 has an uncommon, multi-layered form: a faint layer of gas surrounds a bright inner ring, all wrapped in a broad halo of ionized nitrogen. The spectacle is bittersweet, as the brief phase of fusion in the core will end after only tens of thousands of years, leaving a white dwarf that will never illuminate the clouds around it again.
      This image itself was also the final work of one of Hubble’s instruments: the Wide Field and Planetary Camera 2 (WFPC2). Installed in 1993 to replace the original Wide Field and Planetary Camera, WFPC2 was responsible for some of Hubble’s most enduring images and fascinating discoveries. Hubble’s Wide Field Camera 3 replaced WFPC2 in 2009, during Hubble’s final servicing mission. A mere ten days before astronauts removed Hubble’s WFPC2 from the telescope, the instrument collected the data used in this image: a fitting send-off after 16 years of discoveries. Image processors used the latest and most advanced processing techniques to bring the data to life one more time, producing this breathtaking new view of Kohoutek 4-55.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Share








      Details
      Last Updated Apr 10, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Emission Nebulae Goddard Space Flight Center Nebulae Planetary Nebulae Stars The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      The Death Throes of Stars


      From colliding neutron stars to exploding supernovae, Hubble reveals new details of  some of the mysteries surrounding the deaths of…


      Exploring the Birth of Stars


      Seeing ultraviolet, visible, and near-infrared light helps Hubble uncover the mysteries of star formation.


      Hubble’s Nebulae


      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 3 Min Read Hubble Helps Determine Uranus’ Rotation Rate with Unprecedented Precision
      These images from the NASA/ESA Hubble Space Telescope showcase the dynamic aurora on Uranus in October 2022. Credits:
      ESA/Hubble, NASA, L. Lamy, L. Sromovsky An international team of astronomers using the NASA/ESA Hubble Space Telescope has made new measurements of Uranus’ interior rotation rate with a novel technique, achieving a level of accuracy 1,000 times greater than previous estimates. By analyzing more than a decade of Hubble observations of Uranus’ aurorae, researchers have refined the planet’s rotation period and established a crucial new reference point for future planetary research.
      These images from the NASA/ESA Hubble Space Telescope showcase the dynamic aurora on Uranus in October 2022. These observations were made by the Space Telescope Imaging Spectrograph (STIS) and includes both visible and ultraviolet data. An international team of astronomers used Hubble to make new measurements of Uranus’ interior rotation rate by analyzing more than a decade of the telescope’s observations of Uranus’ aurorae. This refinement of the planet’s rotation period achieved a level of accuracy 1000 times greater than previous estimates and serves as a crucial new reference point for future planetary research. ESA/Hubble, NASA, L. Lamy, L. Sromovsky Determining a planet’s interior rotation rate is challenging, particularly for a world like Uranus, where direct measurements are not possible. A team led by Laurent Lamy (of LIRA, Observatoire de Paris-PSL and LAM, Aix-Marseille Univ., France), developed an innovative method to track the rotational motion of Uranus’ aurorae: spectacular light displays generated in the upper atmosphere by the influx of energetic particles near the planet’s magnetic poles. This technique revealed that Uranus completes a full rotation in 17 hours, 14 minutes, and 52 seconds — 28 seconds longer than the estimate obtained by NASA’s Voyager 2 during its 1986 flyby.
      “Our measurement not only provides an essential reference for the planetary science community but also resolves a long-standing issue: previous coordinate systems based on outdated rotation periods quickly became inaccurate, making it impossible to track Uranus’ magnetic poles over time,” explains Lamy. “With this new longitude system, we can now compare auroral observations spanning nearly 40 years and even plan for the upcoming Uranus mission.”
      This image of Uranus’ aurorae was taken by the NASA/ESA Hubble Space Telescope on 10 October 2022. These observations were made by the Space Telescope Imaging Spectrograph (STIS) and includes both visible and ultraviolet data. An international team of astronomers used Hubble to make new measurements of Uranus’ interior rotation rate by analyzing more than a decade of the telescope’s observations of Uranus’ aurorae. This refinement of the planet’s rotation period achieved a level of accuracy 1000 times greater than previous estimates and serves as a crucial new reference point for future planetary research. ESA/Hubble, NASA, L. Lamy, L. Sromovsky This breakthrough was possible thanks to Hubble’s long-term monitoring of Uranus. Over more than a decade, Hubble has regularly observed its ultraviolet auroral emissions, enabling researchers to produce magnetic field models that successfully match the changing position of the magnetic poles with time.
      “The continuous observations from Hubble were crucial,” says Lamy. “Without this wealth of data, it would have been impossible to detect the periodic signal with the level of accuracy we achieved.”
      Unlike the aurorae of Earth, Jupiter, or Saturn, Uranus’ aurorae behave in a unique and unpredictable manner. This is due to the planet’s highly tilted magnetic field, which is significantly offset from its rotational axis. The findings not only help astronomers understand Uranus’ magnetosphere but also provide vital information for future missions.
      These findings set the stage for further studies that will deepen our understanding of one of the most mysterious planets in the Solar System. With its ability to monitor celestial bodies over decades, the Hubble Space Telescope continues to be an indispensable tool for planetary science, paving the way for the next era of exploration at Uranus.
      These results are based on observations acquired with Hubble programs GO #12601, 13012, 14036, 16313 and DDT #15380 (PI: L. Lamy). The team’s paper was published in Nature Astronomy.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Related Images & Videos
      Uranus Aurorae Image Trio (October 2022)



      Close-up: Uranus Aurorae (October 2022)





      Share








      Details
      Last Updated Apr 09, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Contact Media Claire Andreoli
      Astrophysics Communications Manager
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov
      Bethany Downer
      ESA/Hubble Chief Science Communications Officer
      Bethany.Downer@esahubble.org
      Related Terms
      Hubble Space Telescope Astrophysics Division Goddard Space Flight Center Planetary Science Planets The Solar System Uranus
      Related Links and Downloads
      Science Paper Release ESA’s Website

      Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Studying the Planets and Moons



      Reshaping Our Cosmic View: Hubble Science Highlights



      Hubble’s Beautiful Universe


      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Studies a Nearby Galaxy’s Star Formation
      This NASA/ESA Hubble Space Telescope image features the picturesque spiral galaxy NGC 4941. ESA/Hubble & NASA, D. Thilker This NASA/ESA Hubble Space Telescope image features the picturesque spiral galaxy NGC 4941, which lies about 67 million light-years from Earth in the constellation Virgo (The Maiden). Because this galaxy is nearby, cosmically speaking, Hubble’s keen instruments are able to pick out exquisite details such as individual star clusters and filamentary clouds of gas and dust.
      The data used to construct this image were collected as part of an observing program that investigates the star formation and stellar feedback cycle in nearby galaxies. As stars form in dense, cold clumps of gas, they begin to influence their surroundings. Stars heat and stir up the gas clouds in which they form through winds, starlight, and — eventually, for massive stars — by exploding as supernovae. These processes are collectively called stellar feedback, and they influence the rate at which a galaxy can form new stars.
      As it turns out, stars aren’t the only entities providing feedback in NGC 4941. At the heart of this galaxy lies an active galactic nucleus: a supermassive black hole feasting on gas. As the black hole amasses gas from its surroundings, the gas swirls into a superheated disk that glows brightly at wavelengths across the electromagnetic spectrum. Similar to stars — but on a much, much larger scale — active galactic nuclei shape their surroundings through winds, radiation, and powerful jets, altering not only star formation but also the evolution of the galaxy as a whole.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Apr 04, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Night Sky Challenge



      Hubble’s Galaxies



      35 Years of Hubble Images


      View the full article
    • By NASA
      Explore HubbleHubble Home OverviewAbout Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & BenefitsHubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts ScienceHubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky ObservatoryHubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb TeamHubble Team Career Aspirations Hubble Astronauts NewsHubble News Social Media Media Resources MultimediaMultimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More35th Anniversary Online Activities 3 Min Read Hubble Spots Stellar Sculptors in Nearby Galaxy
      This dazzling NASA/ESA Hubble Space Telescope image features the young star cluster NGC 346. Credits: ESA/Hubble & NASA, A. Nota, P. Massey, E. Sabbi, C. Murray, M. Zamani (ESA/Hubble) As part of ESA/Hubble’s 35th anniversary celebrations, ESA is sharing a new image series revisiting stunning, previously released Hubble targets with the addition of the latest Hubble data and new processing techniques.
      This new image showcases the dazzling young star cluster NGC 346. Although both the James Webb Space Telescope and Hubble have released images of NGC 346 previously, this image includes new data and is the first to combine Hubble observations made at infrared, optical, and ultraviolet wavelengths into an intricately detailed view of this vibrant star-forming factory.
      This dazzling NASA/ESA Hubble Space Telescope image features the young star cluster NGC 346. ESA/Hubble & NASA, A. Nota, P. Massey, E. Sabbi, C. Murray, M. Zamani (ESA/Hubble) NGC 346 is in the Small Magellanic Cloud, a satellite galaxy of the Milky Way that lies 200,000 light-years away in the constellation Tucana. The Small Magellanic Cloud is less rich in elements heavier than helium — what astronomers call metals — than the Milky Way. This makes conditions in the galaxy similar to what existed in the early universe.
      NGC 346 is home to more than 2,500 newborn stars. The cluster’s most massive stars, which are many times more massive than our Sun, blaze with an intense blue light in this image. The glowing pink nebula and snakelike dark clouds are sculpted by the luminous stars in the cluster.
      Hubble’s exquisite sensitivity and resolution were instrumental in uncovering the secrets of NGC 346’s star formation. Using two sets of observations taken 11 years apart, researchers traced the motions of NGC 346’s stars, revealing them to be spiraling in toward the center of the cluster. This spiraling motion arises from a stream of gas from outside of the cluster that fuels star formation in the center of the turbulent cloud.
      The inhabitants of this cluster are stellar sculptors, carving out a bubble within the nebula. NGC 346’s hot, massive stars produce intense radiation and fierce stellar winds that pummel the billowing gas of their birthplace, dispersing the surrounding nebula.
      The nebula, named N66, is the brightest example of an H II (pronounced ‘H-two’) region in the Small Magellanic Cloud. H II regions are set aglow by ultraviolet light from hot, young stars like those in NGC 346. The presence of this nebula indicates the young age of the star cluster, as an H II region shines only as long as the stars that power it — a mere few million years for the massive stars pictured here.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore Hubble NGC 346 Images and Science
      Download the image above

      NASA’s Hubble Finds Spiraling Stars, Providing Window into Early Universe

      Young Stars Sculpt Gas with Powerful Outflows in the Small Magellanic Cloud

      Hubble’s Black and White View

      Infant Stars in the Small Magellanic Cloud

      Hubble Captures Unique Ultraviolet View of a Spectacular Star Cluster

      Share
      Details
      Last Updated Apr 04, 2025 EditorAndrea GianopoulosLocationNASA Goddard Space Flight Center Contact Media
      Claire Andreoli
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov


      Bethany Downer
      ESA/Hubble Chief Science Communications Officer
      bethany.downer@esahubble.org


      Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Goddard Space Flight Center Nebulae Stars The Universe Related Links
      ESA/Hubble’s 35th anniversary celebrations Release on ESA’s website Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope
      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
      Exploring the Birth of Stars
      Hubble’s 35th Anniversary
      Hubble News
      View the full article
    • By European Space Agency
      Image: This new image from the NASA/ESA Hubble Space Telescope showcases NGC 346, a dazzling young star cluster in the Small Magellanic Cloud. The Small Magellanic Cloud is a satellite galaxy of the Milky Way, located 210 000 light-years away in the constellation Tucana. The Small Magellanic Cloud is less rich in elements heavier than helium — what astronomers call metals — than the Milky Way. This makes conditions in the galaxy similar to what existed in the early Universe.
      Although several images of NGC 346 have been released previously, this view includes new data and is the first to combine Hubble observations made at infrared, optical, and ultraviolet wavelengths into an intricately detailed view of this vibrant star-forming factory.
      NGC 346 is home to more than 2500 newborn stars. The cluster’s most massive stars, which are many times more massive than our Sun, blaze with an intense blue light in this image. The glowing pink nebula and snakelike dark clouds are the remnant of the birthplace of the stars in the cluster.
      The inhabitants of this cluster are stellar sculptors, carving out a bubble from the nebula. NGC 346’s hot, massive stars produce intense radiation and fierce stellar winds that pummel the billowing gas of their birthplace and begin to disperse the surrounding nebula.
      The nebula, named N66, is the brightest example of an H II (pronounced ‘H-two’) region in the Small Magellanic Cloud. H II regions are set aglow by ultraviolet light from hot young stars like those in NGC 346. The presence of the brilliant nebula indicates the young age of the star cluster, as an H II region shines only as long as the stars that power it — a mere few million years for the massive stars pictured here.
      [Image description: A star cluster within a nebula. The background is filled with thin, pale blue clouds. Parts are thicker and pinker in colour. The cluster is made up of bright blue stars that illuminate the nebula around them. Large arcs of dense dust curve around, before and behind the clustered stars, pressed together by the stars’ radiation. Behind the clouds of the nebula can be seen large numbers of orange stars.]
      View the full article
  • Check out these Videos

×
×
  • Create New...