Jump to content

Recommended Posts

  • Publishers
Posted
full moon

Lee esta historia en español aquí

When Rose Ferreira first saw an image of a field of galaxies and galaxy clusters from NASA’s James Webb Space Telescope in July, she “went into the restroom and broke down a little,” she said. This “Deep Field” image showed galaxies not only sharper, but deeper into the universe than a similar image she loved from the Hubble Space Telescope.

“Being able to contribute in any way to the efforts of the team within NASA that released this new Deep Field just felt like such a profound thing for me,” said Ferreira, a student at Arizona State University who interned with NASA this summer. “I was just a little bit in shock for, like, a week.”

A black-and-white photo of Rose Ferreira, who studies planetary science and astronomy at Arizona State University.
Rose Ferreira estudia ciencias planetarias y astronomía en la Universidad Estatal de Arizona.
Credits: James Mayer

Webb, the largest space science telescope ever, which launched in December 2021, played a big role in Ferreira’s internship at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. She also supported a series of live news interviews for Webb’s first images and multimedia tasks for NASA’s Spanish-language communications program.

Growing up in the Dominican Republic, Ferreira said she didn’t have access to science education. She was taught skills like cooking and cleaning; she didn’t know NASA existed at that time.

But during the frequent blackouts in her village, when the Moon provided the only light, Rose Ferreira often wondered – what is the Moon all about? “The moonlight is a lot of what I used to see, and I was always so curious about that,” she said. “That obsession is what made me start asking questions.”

When she came to New York, she was placed in an underserved high school that sent her back multiple grades because they weren’t satisfied with her English language skills. She left and earned a GED diploma instead, hoping to go to college faster.

At age 18, Ferreira became homeless in New York and lived in train stations. By working as a home health aide, she was able to earn enough to rent an apartment in Queens and, eventually, get an associate degree.

Life threw other major challenges at her, including getting hit by a car and a cancer diagnosis.

Ferreira ultimately enrolled in a planetary science and astronomy degree program at Arizona State University. She received a “great birthday present” in the spring of 2022: her official acceptance to NASA’s internship program.

Among the highlights of her NASA experience was recording a voice-over in Spanish for a This Week at NASA video. She also served as a panelist at an event for the Minority University Research and Education Project, organized by NASA’s Office of STEM Engagement.

Ferreira dreams of becoming an astronaut and has a shorter-term goal of earning a doctorate. But the internship also fueled her passion for sharing space science with the public. Chatting with Goddard astrophysicist Dr. Michelle Thaller, host of the Webb broadcasts, was especially meaningful to her.

Rose Ferreira holds a telephone, seated among others in a broadcast control room.
Rose Ferreira, foreground, in the broadcast control room at NASA’s Goddard Space Flight Center in July 2022.
Credits: NASA

She has this advice for young people who are also interested in pursuing space science: “Coming from a person who had it a bit harder to get there, I think: first, figure out if it is really what you love. And if it is really what you love, then literally find a way to do it no matter who says what.”

Besides Webb, Ferreira is excited about NASA’s Artemis program, which connects with her passion for the Moon. Through Artemis, NASA will send astronauts to establish a long-term presence on and around the Moon. She’s looking forward to what Artemis will uncover about the Moon’s geology and history while the agency uses the Moon to get ready for human exploration of Mars.

“Even when I was living on the streets, the Moon used to be the thing I looked at to calm myself. It’s my sense of comfort, even today when I’m overwhelmed by things,” she said. “It’s like a driving force.”

Written by Elizabeth Landau
NASA Headquarters

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Caption: The Intuitive Machines lunar lander that will deliver NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign is encapsulated in the fairing of the SpaceX Falcon 9 rocket. Credit: SpaceX Carrying NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, the Intuitive Machines IM-2 mission is targeted to launch no earlier than Wednesday, Feb. 26. The mission will lift off on a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.

      Live launch coverage will air on NASA+ with prelaunch events starting Tuesday, Feb. 25. Learn how to watch NASA content through a variety of platforms, including social media. Follow all events at:
      https://www.nasa.gov/live
      After the launch, Intuitive Machines’ lunar lander, Athena, will spend approximately one week in transit to the Moon before landing on the lunar surface no earlier than Thursday, March 6. The lander will carry NASA science investigations and technology demonstrations to further our understanding of the Moon’s environment and help prepare for future human missions to the lunar surface, as part of the agency’s Moon to Mars exploration approach. 

      Among the items on Intuitive Machines’ lander, the IM-2 mission will be one of the first on-site demonstrations of resource use on the Moon. A drill and mass spectrometer will measure the potential presence of volatiles or gases from lunar soil in Mons Mouton, a lunar plateau in the Moon’s South Pole. In addition, a passive Laser Retroreflector Array (LRA) on the top deck of the lander will bounce laser light back at any orbiting or incoming spacecraft to give future spacecraft a permanent reference point on the lunar surface. Other technology instruments on this delivery will demonstrate a robust surface communications system and deploy a propulsive drone that can hop across the lunar surface.
      Launching as a rideshare with the IM-2 delivery, NASA’s Lunar Trailblazer spacecraft also will begin its journey to lunar orbit, where it will map the distribution of the different forms of water on the Moon.

      The deadline has passed for media accreditation for in-person coverage of this launch. The agency’s media accreditation policy is available online. More information about media accreditation is available by emailing: ksc-media-accreditat@mail.nasa.gov.

      Full coverage of this mission is as follows (all times Eastern):

      Tuesday, Feb. 25

      11 a.m. – Lunar science and technology media teleconference with the following participants:
      Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters Niki Werkheiser, director, technology maturation, Space Technology Mission Directorate, NASA Headquarters Jackie Quinn, Polar Resources Ice Mining Experiment 1 (PRIME-1) project manager, NASA Kennedy Daniel Cremons, LRA deputy principal investigator, NASA’s Goddard Space Flight Center Bethany Ehlmann, Lunar Trailblazer principal investigator, Caltech Trent Martin, senior vice president, space systems, Intuitive Machines Thierry Klein, president, Bell Labs Solution Research, Nokia Audio of the teleconference will stream live on the agency’s website:
      https://www.nasa.gov/live/
      Media may ask questions via phone only. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 10 a.m. EST Tuesday, Feb. 25, at: ksc-newsroom@mail.nasa.gov.

      Wednesday, Feb. 26


      11:30 a.m. – Lunar delivery readiness media teleconference with the following participants:
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Clayton Turner, associate administrator, Space Technology Mission Directorate, NASA Headquarters Trent Martin, senior vice president, space systems, Intuitive Machines William Gerstenmaier, vice president, build and flight reliability, SpaceX Melody Lovin, launch weather officer, Cape Canaveral Space Force Station’s 45th Weather Squadron Audio of the teleconference will stream live on the agency’s website:
      https://www.nasa.gov/live/
      Media may ask questions via phone only. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 10 a.m. EST Wednesday, Feb. 26, at: ksc-newsroom@mail.nasa.gov.

      Launch coverage will begin on NASA+ approximately 45 minutes before liftoff. A specific time will be shared the week of Feb. 24.

      NASA Launch Coverage
      Audio only of the media teleconferences and launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, -1240, or -7135. On launch day, the full mission broadcast can be heard on -1220 and -1240, while the countdown net only can be heard on -7135 beginning approximately one hour before the mission broadcast begins.

      On launch day, a “tech feed” of the launch without NASA TV commentary will be carried on the NASA TV media channel.

      NASA Website Launch Coverage
      Launch day coverage of the mission will be available on the NASA website. Coverage will include live streaming and blog updates beginning Feb. 26, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468.

      NASA Virtual Guests for Launch
      Members of the public can register to attend this launch virtually. Registrants will receive mission updates and activities by email, including curated mission resources, schedule updates, and a virtual guest passport stamp following a successful launch. Print your passport and get ready to add your stamp!

      Watch, Engage on Social Media
      Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtag #Artemis. You can also stay connected by following and tagging these accounts:

      X: @NASA, @NASAKennedy, @NASAArtemis, @NASAMoon

      Facebook: NASA, NASAKennedy, NASAArtemis

      Instagram: @NASA, @NASAKennedy, @NASAArtemis

      Coverage en Español
      Did you know NASA has a Spanish section called NASA en español? Check out NASA en español on X, Instagram, Facebook, and YouTube for additional mission coverage.

      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.

      For more information about the agency’s CLPS initiative, see:
      https://www.nasa.gov/clps
      -end-
      Karen Fox / Jasmine Hopkins
      Headquarters, Washington
      301-286-6284 / 321-432-4624
      karen.c.fox@nasa.gov / jasmine.s.hopkins@nasa.gov

      Natalia Riusech / Nilufar Ramji
      Johnson Space Center, Houston
      281-483-5111
      nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-501-8425
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Feb 21, 2025 Related Terms
      Missions Artemis Commercial Lunar Payload Services (CLPS) Science Mission Directorate Space Technology Mission Directorate View the full article
    • By NASA
      Gateway’s HALO (Habitation and Logistics Outpost) in a cleanroom at Thales Alenia Space in Turin, Italy. After final installations are complete, it will be packaged and transported to the United States for final outfitting before being integrated with Gateway’s Power and Propulsion Element and launched to lunar orbit. Thales Alenia Space Through the Artemis campaign, NASA will send astronauts on missions to and around the Moon. The agency and its international partners report progress continues on Gateway, the first space station that will permanently orbit the Moon, after visiting the Thales Alenia Space facility in Turin, Italy, where initial fabrication for one of two Gateway habitation modules is nearing completion.
      Leaders from NASA, ESA (European Space Agency), and the Italian Space Agency, as well as industry representatives from Northrop Grumman and Thales Alenia Space, were in Turin to assess Gateway’s HALO (Habitation and Logistics Outpost) module before its primary structure is shipped from Italy to Northrop Grumman’s Gilbert, Arizona site in March. Following final outfitting and verification testing, the module will be integrated with the Power and Propulsion Element at NASA’s Kennedy Space Center in Florida.
      “Building and testing hardware for Gateway is truly an international collaboration,” said Jon Olansen, manager, Gateway Program, at NASA’s Johnson Space Center in Houston. “We’re excited to celebrate this major flight hardware milestone, and this is just the beginning – there’s impressive and important progress taking shape with our partners around the globe, united by our shared desire to expand human exploration of our solar system while advancing scientific discovery.”
      Gateway’s HALO (Habitation and Logistics Outpost) in a cleanroom at Thales Alenia Space in Turin, Italy. After final installations are complete, it will be packaged and transported to the United States for final outfitting before being integrated with Gateway’s Power and Propulsion Element and launched to lunar orbit.Thales Alenia Space To ensure all flight hardware is ready to support Artemis IV — the first crewed mission to Gateway – NASA is targeting the launch of HALO and the Power and Propulsion Element no later than December 2027. These integrated modules will launch aboard a SpaceX Falcon Heavy rocket and spend about a year traveling uncrewed to lunar orbit, while providing scientific data on solar and deep space radiation during transit.
      Launching atop HALO will be ESA’s Lunar Link communication system, which will provide high-speed communication between the Moon and Gateway. The system is undergoing testing at another Thales Alenia Space facility in Cannes, France.
      Once in lunar orbit, Gateway will continue scientific observations while awaiting the arrival of Artemis IV astronauts aboard an Orion spacecraft which will deliver and dock Gateway’s second pressurized habitable module, the ESA-led Lunar I-Hab. Thales Alenia Space, ESA’s primary contractor for the Lunar I-Hab and Lunar View refueling module, has begun production of the Lunar I-Hab, and design of Lunar View in Turin.
      Teams from NASA and ESA (European Space Agency), including NASA astronaut Stan Love (far right) and ESA astronaut Luca Parmitano (far left) help conduct human factors testing inside a mockup of Gateway’s Lunar I-Hab module.Thales Alenia Space Northrop Grumman and its subcontractor, Thales Alenia Space, completed welding of HALO in 2024, and the module successfully progressed through pressure and stress tests to ensure its suitability for the harsh environment of deep space.
      Maxar Space Systems is assembling the Power and Propulsion Element, which will make Gateway the most powerful solar electric propulsion spacecraft ever flown. Major progress in 2024 included installation of Xenon and chemical propulsion fuel tanks, and qualification of the largest roll-out solar arrays ever built. NASA and its partners will complete propulsion element assembly, and acceptance and verification testing of next-generation electric propulsion thrusters this year.
      The main bus of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.Maxar Space Systems SpaceX will provide both the Starship human landing system that will land astronauts on the lunar surface during NASA’s Artemis III mission and ferry astronauts from Gateway to the lunar South Pole region during Artemis IV, as well as provide logistics spacecraft to support crewed missions.
      NASA also has selected Blue Origin to develop Blue Moon, the human landing system for Artemis V, as well as logistics spacecraft for future Artemis missions. Having two distinct lunar landing designs provides flexibility and supports a regular cadence of Moon landings in preparation for future missions to Mars.
      CSA (Canadian Space Agency) is developing Canadarm3, an advanced robotics system, and JAXA (Japan Aerospace Exploration Agency) is designing and testing Lunar I-Hab’s vital life support systems, batteries, and a resupply and logistics vehicle called HTV-XG.
      NASA’s newest Gateway partner, the Mohammad Bin Rashid Space Centre (MBRSC) of the United Arab Emirates, kicked off early design for the Gateway Crew and Science Airlock that will be delivered on Artemis VI. The selection of Thales Alenia Space as its airlock prime contractor was announced by MBRSC on Feb. 4.
      Development continues to advance on three radiation-focused initial science investigations aboard Gateway. These payloads will help scientists better understand unpredictable space weather from the Sun and galactic cosmic rays that will affect astronauts and equipment during Artemis missions to the Moon and beyond.
      The Gateway lunar space station is a multi-purpose platform that offers capabilities for long-term exploration in deep space in support of NASA’s Artemis campaign and Moon to Mars objectives. Gateway will feature docking ports for a variety of visiting spacecraft, as well as space for crew to live, work, and prepare for lunar surface missions. As a testbed for future journeys to Mars, continuous investigations aboard Gateway will occur with and without crew to better understand the long-term effects of deep space radiation on vehicle systems and the human body as well as test and operate next generation spacecraft systems that will be necessary to send humans to Mars.
      Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
      Details
      Last Updated Feb 21, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
      Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Space Station Humans in Space Johnson Space Center Explore More
      2 min read Lunar Space Station Module Will Journey to US ahead of NASA’s Artemis IV Moon Mission
      A key element of the Gateway lunar space station has entered the cleanroom for final…
      Article 1 week ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
      Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
      Article 1 month ago 2 min read Gateway Tops Off
      Gateway’s Power and Propulsion Element is now equipped with its xenon and liquid fuel tanks.
      Article 3 months ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Orion Spacecraft
      Human Landing System
      Extravehicular Activity and Human Surface Mobility
      View the full article
    • By NASA
      6 Min Read NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind 
      Earth is immersed in material streaming from the Sun. This stream, called the solar wind, is washing over our planet, causing breathtaking auroras, impacting satellites and astronauts in space, and even affecting ground-based infrastructure. 
      NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission will be the first to image the Sun’s corona, or outer atmosphere, and solar wind together to better understand the Sun, solar wind, and Earth as a single connected system.  
      Launching no earlier than Feb. 28, 2025, aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California, PUNCH will provide scientists with new information about how potentially disruptive solar events form and evolve. This could lead to more accurate predictions about the arrival of space weather events at Earth and impact on humanity’s robotic explorers in space. 
      “What we hope PUNCH will bring to humanity is the ability to really see, for the first time, where we live inside the solar wind itself,” said Craig DeForest, principal investigator for PUNCH at Southwest Research Institute’s Solar System Science and Exploration Division in Boulder, Colorado. 
      This video can be freely shared and downloaded at https://svs.gsfc.nasa.gov/14773.
      Video credit: NASA’s Goddard Space Flight Center Seeing Solar Wind in 3D 
      The PUNCH mission’s four suitcase-sized satellites have overlapping fields of view that combine to cover a larger swath of sky than any previous mission focused on the corona and solar wind. The satellites will spread out in low Earth orbit to construct a global view of the solar corona and its transition to the solar wind. They will also track solar storms like coronal mass ejections (CMEs). Their Sun-synchronous orbit will enable them to see the Sun 24/7, with their view only occasionally blocked by Earth.  
      Typical camera images are two dimensional, compressing the 3D subject into a flat plane and losing information. But PUNCH takes advantage of a property of light called polarization to reconstruct its images in 3D. As the Sun’s light bounces off material in the corona and solar wind, it becomes polarized — meaning the light waves oscillate in a particular way that can be filtered, much like how polarized sunglasses filter out glare off of water or metal. Each PUNCH spacecraft is equipped with a polarimeter that uses three distinct polarizing filters to capture information about the direction that material is moving that would be lost in typical images.  
      “This new perspective will allow scientists to discern the exact trajectory and speed of coronal mass ejections as they move through the inner solar system,” said DeForest. “This improves on current instruments in two ways: with three-dimensional imaging that lets us locate and track CMEs which are coming directly toward us; and with a broad field of view, which lets us track those CMEs all the way from the Sun to Earth.” 
      All four spacecraft are synchronized to serve as a single “virtual instrument” that spans the whole PUNCH constellation. 
      Crews conduct additional solar array deployment testing for NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) satellites at Astrotech Space Operations located on Vandenberg Space Force Base in California on Wednesday, Jan. 22, 2025. USSF 30th Space Wing/Alex Valdez The PUNCH satellites include one Narrow Field Imager and three Wide Field Imagers. The Narrow Field Imager (NFI) is a coronagraph, which blocks out the bright light from the Sun to better see details in the Sun’s corona, recreating what viewers on Earth see during a total solar eclipse when the Moon blocks the face of the Sun — a narrower view that sees the solar wind closer to the Sun. The Wide Field Imagers (WFI) are heliospheric imagers that view the very faint, outermost portion of the solar corona and the solar wind itself — giving a wide view of the solar wind as it spreads out into the solar system.   
      “I’m most excited to see the ‘inbetweeny’ activity in the solar wind,” said Nicholeen Viall, PUNCH mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This means not just the biggest structures, like CMEs, or the smallest interactions, but all the different types of solar wind structures that fill that in between area.” 
      When these solar wind structures from the Sun reach Earth’s magnetic field, they can drive dynamics that affect Earth’s radiation belts. To launch spacecraft through these belts, including ones that will carry astronauts to the Moon and beyond, scientists need to understand the solar wind structure and changes in this region. 
      Building Off Other Missions 
      “The PUNCH mission is built on the shoulders of giants,” said Madhulika Guhathakurta, PUNCH program scientist at NASA Headquarters in Washington. “For decades, heliophysics missions have provided us with glimpses of the Sun’s corona and the solar wind, each offering critical yet partial views of our dynamic star’s influence on the solar system.” 
      When scientists combine data from PUNCH and NASA’s Parker Solar Probe, which flies through the Sun’s corona, they will see both the big picture and the up-close details. Working together, Parker Solar Probe and PUNCH span a field of view from a little more than half a mile (1 kilometer) to over 160 million miles (about 260 million kilometers). 
      Additionally, the PUNCH team will combine their data with diverse observations from other missions, like NASA’s CODEX (Coronal Diagnostic Experiment) technology demonstration, which views the corona even closer to the surface of the Sun from its vantage point on the International Space Station. PUNCH’s data also complements observations from NASA’s EZIE (Electrojet Zeeman Imaging Explorer) — targeted for launch in March 2025 — which investigates the magnetic field perturbations associated with Earth’s high-altitude auroras that PUNCH will also spot in its wide-field view.  
      A conceptual animation showing the heliosphere, the vast bubble that is generated by the Sun’s magnetic field and envelops all the planets.
      NASA’s Goddard Space Flight Center Conceptual Image Lab As the solar wind that PUNCH will observe travels away from the Sun and Earth, it will then be studied by the IMAP (Interstellar Mapping and Acceleration Probe) mission, which is targeting a launch in 2025. 
      “The PUNCH mission will bridge these perspectives, providing an unprecedented continuous view that connects the birthplace of the solar wind in the corona to its evolution across interplanetary space,” said Guhathakurta. 
      The PUNCH mission is scheduled to conduct science for at least two years, following a 90-day commissioning period after launch. The mission is launching as a rideshare with the agency’s next astrophysics observatory, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer).  
      “PUNCH is the latest heliophysics addition to the NASA fleet that delivers groundbreaking science every second of every day,” said Joe Westlake, heliophysics division director at NASA Headquarters in Washington. “Launching this mission as a rideshare bolsters its value to the nation by optimizing every pound of launch capacity to maximize the scientific return for the cost of a single launch.” 
      The PUNCH mission is led by Southwest Research Institute’s offices in San Antonio, Texas, and Boulder, Colorado. The mission is managed by the Explorers Program Office at NASA Goddard for NASA’s Science Mission Directorate in Washington. 
      By Abbey Interrante 
      NASA’s Goddard Space Flight Center, Greenbelt, Md. 
      Header Image:
      An artist’s concept showing the four PUNCH satellites orbiting Earth.
      Credits: NASA’s Goddard Space Flight Center Conceptual Image Lab
      Share








      Details
      Last Updated Feb 21, 2025 Related Terms
      Heliophysics Coronal Mass Ejections Goddard Space Flight Center Heliophysics Division Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate Solar Wind Space Weather The Sun Explore More
      2 min read Hubble Spies a Spiral That May Be Hiding an Imposter


      Article


      3 hours ago
      3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska


      Article


      3 days ago
      2 min read NASA Science: Being Responsive to Executive Orders


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Before Apollo astronauts set foot upon the Moon, much remained unknown about the lunar surface. While most scientists believed the Moon had a solid surface that would support astronauts and their landing craft, a few believed a deep layer of dust covered it that would swallow any visitors. Until 1964, no closeup photographs of the lunar surface existed, only those obtained by Earth-based telescopes. 
      NASA’s Jet Propulsion Laboratory in Pasadena, California, managed the Ranger program, a series of spacecraft designed to return closeup images before impacting on the Moon’s surface. Ranger 7 first accomplished that goal in July 1964. On Feb. 17, 1965, its successor Ranger 8 launched toward the Moon, and three days later returned images of the Moon. The mission’s success helped the country meet President John F. Kennedy’s goal of a human Moon landing before the end of the decade. 

      Schematic diagram of the Ranger 8 spacecraft, showing its major components. NASA/JPL The television system aboard Ranger 8 showing its six cameras.NASA/JPL. Launch of Ranger 8. NASA. Ranger 8 lifted off from Cape Kennedy, now Cape Canaveral, Florida, on Feb. 17, 1965. The Atlas-Agena rocket first placed the spacecraft into Earth orbit before sending it on a lunar trajectory. The next day, the spacecraft carried out a mid-course correction, and on Feb. 20, Ranger 8 reached the Moon. The spacecraft’s six cameras turned on as planned, about eight minutes earlier than its predecessor to obtain images comparable in resolution to ground-based photographs for calibration purposes. Ranger 8 took its first photograph at an altitude of 1,560 miles, and during its final 23 minutes of flight, the spacecraft sent back 7,137 images of the lunar surface. The last image, taken at an altitude of 1,600 feet and 0.28 seconds before Ranger 8 impacted at 1.67 miles per second, had a resolution of about five feet. The spacecraft impacted 16 miles from its intended target in the Sea of Tranquility, ending a flight of 248,900 miles. Scientists had an interest in this area of the Moon as a possible landing zone for a future human landing, and indeed Apollo 11 landed 44 miles southeast of the Ranger 8 impact site in July 1969.  
      Ranger 8’s first image from an altitude of 1,560 miles.NASA/JPL. Ranger 8 image from an altitude of 198 miles, showing craters Ritter and Sabine.NASA/JPL. Ranger 8’s final images, taken at an altitude as low as 1,600 feet. NASA/JPL. One more Ranger mission followed, Ranger 9, in March 1965. Television networks broadcast Ranger 9’s images of the Alphonsus crater and the surrounding area “live” as the spacecraft approached its impact site in the crater – letting millions of Americans see the Moon up-close as it happened. Based on the photographs returned by the last three Rangers, scientists felt confident to move on to the next phase of robotic lunar exploration, the Surveyor series of soft landers. The Ranger photographs provided confidence that the lunar surface could support a soft-landing and that the Sea of Tranquility presented a good site for the first human landing. A little more than four years after the final Ranger images, Apollo 11 landed the first humans on the Moon. 

      Impact sites of Rangers 7, 8, and 9. NASA/JPL. The Ranger 8 impact crater, marked by the blue circle, photographed by Lunar Orbiter 2 in 1966.NASA/JPL. Lunar Reconnaissance Orbiter image of the Ranger 8 impact crater, taken in 2012 at a low sun angle.NASA/Goddard Space Flight Center/Arizona State University. The impacts of the Ranger probes left visible craters on the lunar surface, later photographed by orbiting spacecraft. Lunar Orbiter 2 and Apollo 16 both imaged the Ranger 8 impact site at relatively low resolution in 1966 and 1972, respectively. The Lunar Reconnaissance Orbiter imaged the crash site in greater detail in 2012. 
      Watch a brief video about the Ranger 8 impact on the Moon. 

      Explore More
      5 min read 60 Years Ago: Ranger 7 Photographs the Moon
      Article 7 months ago 8 min read 55 Years Ago: Apollo 11’s One Small Step, One Giant Leap
      Article 7 months ago 4 min read NASA’s Artemis II Crew Uses Iceland Terrain for Lunar Training
      At first glance, it seems like a scene from an excursion on the Moon’s surface…except…
      Article 5 months ago View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Astronaut Jeanette Epps extracts DNA samples from bacteria colonies for genomic analysis aboard the International Space Station’s Harmony module.NASA In an effort to learn more about astronaut health and the effects of space on the human body, NASA is conducting a new experiment aboard the International Space Station to speed up the detection of antibiotic-resistant bacteria, thus improving the health safety not only of astronauts but patients back on Earth.
      Infections caused by antibiotic-resistant bacteria can be difficult or impossible to treat, making antibiotic resistance a leading cause of death worldwide and a global health concern.
      Future astronauts visiting the Moon or Mars will need to rely on a pre-determined supply of antibiotics in case of illness. Ensuring those antibiotics remain effective is an important safety measure for future missions.
      The Genomic Enumeration of Antibiotic Resistance in Space (GEARS) experiment, which is managed by NASA’s Ames Research Center in California’s Silicon Valley, involves astronauts swabbing interior surfaces across the space station and testing those samples for evidence of antibiotic-resistant bacteria, and in particular Enterococcus faecalis, a type of bacteria commonly found in the human body. The experiment is the first step in a series of work that seeks to better understand how organisms grow in a space environment, and how those similarities and differences might help improve research back on Earth.
      “Enterococcus is a type of organism that’s been with us since our ancestors crawled out of the ocean, and is a core member of the human gut,” said Christopher Carr, assistant professor at the Georgia Institute of Technology and co-principal investigator of GEARS. “It’s able to survive inside and outside of its host, which has allowed it to become the second highest leading cause of hospital-acquired infections. We want to understand how this type of organism is adapting to the space environment.”
      The GEARS experiment seeks to improve the detection and identification of these bacteria, building on existing efforts to understand what organisms grow on the station’s surfaces.
      “We’ve been monitoring the surfaces of the space station since 2000, but this experiment will give us insight beyond the identities of present organisms, which is currently all that is used for risk assessment,” said Sarah Wallace, a microbiologist at NASA’s Johnson Space Center in Houston and co-principal investigator of GEARS. “With the station orbiting close to Earth, it’s a low-risk space to evaluate and learn more about the frequency of this bacteria and how it responds to the space environment so we can apply this understanding to missions to the Moon and Mars, where resupplies are more complex.”
      Over the next year, astronauts will swab parts of the station and analyze samples by adding an antibiotic to the medium in which the samples will grow. The results will reveal where this and other resistant bacteria are growing and whether they can persist or spread across the station.
      I hope we can shine a light on rapidly analyzing bacteria: if we can do this in space, we can do it on Earth, too.
      Sarah WAllace
      NASA Microbiologist
      The experiment was originally launched to the ISS on the 30th SpaceX commercial resupply services (CRS) mission in March 2024, and the first round of GEARS testing turned up surprising results: very few resistant bacteria colonies, none of which were E. faecalis. This bodes well for the threat of antibiotic resistance in space.
      “There was some cleaning done before swabbing the station, which may have removed some bacteria,” said Carr. To better understand how and where risky bacteria may live, the astronauts paused some cleaning before the second round of swabbing.
      “We want the astronauts to have a clean environment, but we also want to test those high-touch areas, so they intentionally and briefly avoided cleaning some areas so we can understand how bacteria may grow or spread on the station.”
      This experiment is the first study to perform metagenomic sequencing in space, a method that analyzes all the genetic material in a sample to identify and characterize all organisms that are present, an important research and medical diagnostic capability for future deep space missions.
      The GEARS team hopes to create a rapid workflow to analyze bacteria samples, reducing the time between swabbing and test results from days to hours. That workflow could be applied in hospitals and make a huge impact when treating hospital-acquired infections from antibiotic-resistant microbes.
      The result could save lives – more than 35,000 people die each year as a result of antibiotic-resistant infections. The issue is personal to Wallace, who lost a family member to a hospital-acquired infection.
      “It’s not that uncommon: so many people have experienced this kind of loss,” said Wallace. “A method to give an answer in a matter of hours is huge and profound. It’s my job to keep the crew healthy, but we’re also passionate about bringing that work back down to Earth. I hope we can shine a light on rapidly analyzing bacteria: if we can do this in space, we can do it on Earth, too.”
      Genomic Enumeration of Antibiotic Resistance in Space (GEARS) was funded by the Biological and Physical Sciences Space Biology Program, with pioneering funding and support from the Mars Campaign office.
      Share
      Details
      Last Updated Feb 19, 2025 Related Terms
      International Space Station (ISS) Ames Research Center Biological & Physical Sciences Explore More
      2 min read 2024 Annual Highlights of Results from the International Space Station Science
      Article 1 day ago 2 min read Station Science Top News: Feb. 14, 2025
      Article 1 day ago 5 min read NASA Tests Drones to Provide Micrometeorology, Aid in Fire Response
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...