Jump to content

Jesse Walsh: Possibility at the Cutting Edge of Flight


Recommended Posts

  • Publishers
Posted
A man with blond hair and beard smiles at the camera in a portrait.
Jesse Walsh helps to bring people together in his work with project formulation management. “I try to build trust between team members by understanding everyone’s incentives and making sure all team members understand the different incentives,” he said. “We may have different angles of approach, but we all have the same goal.”
Credits: NASA’s Goddard Space Flight Center/William Hrybyk

Name: Jesse Walsh

Formal Job Classification: Project Formulation Manager

Organization: Project Formulation and Development Office, Flight Projects Directorate (Code 401.0)

What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?

As a formulation manager, I am the project manager in the room as we are designing science space flight missions. We develop proposals to be competed on the agency level against other NASA centers, and outside institutions.

I am also our office’s representative on the Earth science line of business.

Two men smile and hold a certificate between them.
“I help everyone negotiate a balance that fits within the cost and schedule,” said Walsh. “The diversity between and among scientists, engineers, and financial experts is what creates NASA’s innovative solutions.”
Credits: NASA’s Goddard Space Flight Center/William Hrybyk

What is your background?

In 2000, I graduated from the U.S. Naval Academy with a B.S. in mechanical engineering. In the Navy I went to flight school in Pensacola, Florida, and became a naval flight officer. I was the “Goose,” not “Maverick,” in the P-3 Orion, a four-engine prop plane that primarily hunts for submarines. I was then stationed in Hawaii as part of Patrol Squadron 9, that deployed to the Far East and Middle East. Next, I worked at the Naval Research Lab in Washington, D.C., as a project officer for science experiments on P-3s from Patuxent River Naval Air Station in Patuxent River, Maryland.

I developed migraines that disqualified me from flying. In 2007, I got a master’s in civil engineering project management from the University of Maryland. I then worked in Bethesda, Maryland, constructing buildings around the beltway, as a physics teacher at our local high school, and as a project manager of secure facilities with the Army Corps of Engineers.

In 2016, I became the assistant branch head for facilities planning at Goddard. I later entered the Flight Projects Development Program, a two-year project manager training program, during which time I worked at the Flight Projects Development Office and as the payload manager for Space Infrastructure Dexterous Robot (SPIDER), a payload on OSAM-1. I had a proposal selected for a second step, and I came back to PFDO to work proposals.

Why is this your dream job?

We are on the cutting edge of what will fly. We are designing the missions and figuring out what the world of possible will be in space in five to seven years. Scientists come to the table with ideas and engineers make those ideas reality. I make sure the whole team is working together and that all these ideas and solutions fit within our budget and schedule. We make ideas realities.

How do you translate between scientists and engineers?

It is primarily about understanding incentives. Everyone is thinking differently with different solutions, but we have the same goal. Some scientists have had an idea for years, but the idea still has to be workable. If the resulting instrument or spacecraft fails, technical issues are often the first to be examined. I help the engineers push what they are comfortable making and help the scientists understand the limits of technology.

Please talk about the competing pressures of your job.

We are responsible for taxpayer’s money. If one thing goes wrong, even on a smaller mission, the monetary loss can run into many millions. The missions we build have cost limits. We fit cutting edge science into a cost-limited opportunity.

NASA is extremely thorough. We safeguard taxpayer funds, but also push cutting-edge science.

We are on a seesaw. The engineers are more focused on technical solutions while the scientists are more focused on scientific results. I help everyone negotiate a balance that fits within the cost and schedule. The diversity between and among scientists, engineers, and financial experts is what creates NASA’s innovative solutions.

Four people in work clothes posing in front of a brown wall.
“We are on the cutting edge of what will fly,” said Jesse Walsh about his work as a project formulation manager. “We are designing the missions and figuring out what the world of possible will be in space in five to seven years.”
Credits: NASA’s Goddard Space Flight Center/William Hrybyk

What are some of your negotiating techniques?

I try to build trust between team members by understanding everyone’s incentives and making sure all team members understand the different incentives. We may have different angles of approach, but we all have the same goal. People are more likely to compromise the means if they know we will end up at the same place.

What is your proudest accomplishment?

I am proudest of our Dorado proposal because it was cutting edge science. We were trying to discover where heavy metals like gold are created in the universe. We were trying to prove that we could do fundamental science on a very lean budget, $35 million.

We did not win the final proposal, but I was extremely proud of our team, a very small, high-functioning team, that made us feel like we could discover the world.

You recently transferred to support the Geospace Dynamics Constellation (GDC) mission. What do you most enjoy about your new role?

I am still learning what I don’t know about GDC. I am finding is fascinating to see how the plans that are made in early stages of formulation change and adapt as they run into unforeseen obstacles during implementation. I am really enjoying being part of a small, high performing team, that is mission focused.

A man in a purple T-shirt holds a fishing net over one shoulder and smiles.
“We fit cutting-edge science into a cost-limited opportunity,” said Jesse Walsh of his work in project formulation management.”NASA is extremely thorough. We safeguard taxpayer funds, but also push cutting-edge science.”
Credits: Courtesy of Jesse Walsh

Who is your favorite author?

I married a librarian, and books and stories are fundamental parts of our life. I love Hemingway because he portrays extremely complex, emotional scenarios in very simplistic terms.

Who is your science hero?

My high school physics teacher, Mr. Finkbeiner, who taught me that you understand science in your gut, not your head. Science is not memorizing equations; it is understanding how the world around you works.

What are your hobbies?

I love flyfishing on the Chesapeake’s tidal rivers and also on fresh water for trout. Flyfishing involves actively engaging with nature; reading the water and the tides, figuring out nature’s puzzle and trying to crack the code.

What is your “six-word memoir”? A six-word memoir describes something in just six words.

I can’t wait for what’s next! 

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

A graphic with a collection of people's portraits grouped together in front of a soft blue galaxy background. The people come from various races, ethnicities, and genders. A soft yellow star shines in the upper left corner, and the stylized text "Conversations with Goddard" is in white on the far right.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Defense Secretary Pete Hegseth discussed his priorities of strengthening the military by cutting fiscal fraud, waste and abuse at DOD while also finding ways to refocus the department's budget.

      View the full article
    • By NASA
      NASA Blue mach diamonds from the main engine nozzles and bright exhaust from the solid rocket boosters mark the successful launch of space shuttle Endeavour 25 years ago on Feb. 11, 2000. The STS-99 mission crew – including astronauts from NASA, the National Space Development Agency of Japan (NASDA), and the European Space Agency (ESA) – were aboard the shuttle.
      This mission saw the deployment of the Shuttle Radar Topography Mission mast and the antenna turned to its operation position. After a successful checkout of the radar systems, mapping began less than 12 hours after launch. Crewmembers split into two shifts so they could work around the clock.
      Also aboard Endeavour was a student experiment called EarthKAM, which took 2,715 digital photos during the mission through an overhead flight-deck window. The NASA-sponsored program lets middle school students select photo targets and receive the images via the Internet. 
      Image credit: NASA
      View the full article
    • By NASA
      NASA has awarded Dynamic Aviation Group Inc. of Bridgewater, Virginia, the Commercial Aviation Services contract to support the agency’s Airborne Science Program. The program provides aircraft and technology to further science and advance the use of Earth observing satellite data, making NASA data about our home planet and innovations accessible to all.
      This is an indefinite-delivery/indefinite-quantity firm-fixed-price contract with a maximum potential value of $13.5 million. The period of performance began Friday, Jan. 31, and continues through Jan. 30, 2030. 
      Under this contract, the company will provide ground and flight crews and services using modified commercial aircraft, including a Beechcraft King Air B200 and Beechcraft King Air A90. Work will include mechanical and electrical engineering services for instrument integration and de-integration, flight planning and real-time tracking, project execution, as well as technical feasibility assessments and cost estimation. Aircraft modifications may include instrumented nosecones, viewing ports, inlets, computing systems, and satellite communications capabilities. 
      This work is essential for NASA to conduct airborne science missions, develop and validate earth system models, and support satellite payload calibration. NASA’s Ames Research Center in California’s Silicon Valley will administer the agency-wide contract on behalf of the Airborne Science Program in the Earth Science Division at NASA Headquarters in Washington.
      To learn more about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Rachel Hoover
      Ames Research Center, Silicon Valley, Calif.
      650-604-4789
      rachel.hoover@nasa.gov

      View the full article
    • By NASA
      As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Intuitive Machines’ second delivery to the Moon will carry NASA technology demonstrations and science investigations on their Nova-C class lunar lander. Credit: Intuitive Machines NASA will host a media teleconference at 1 p.m. EST Friday, Feb. 7, to discuss the agency’s science and technology flying aboard Intuitive Machines’ second flight to the Moon. The mission is part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term lunar presence. 

      Audio of the call will stream on the agency’s website at:
      https://www.nasa.gov/live
      Briefing participants include:
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Niki Werkheiser, director, technology maturation, Space Technology Mission Directorate, NASA Headquarters Trent Martin, senior vice president, space systems, Intuitive Machines To participate by telephone, media must RSVP no later than two hours before the briefing to: ksc-newsroom@mail.nasa.gov. NASA’s media accreditation policy is available online.

      Intuitive Machines’ lunar lander, Athena, will launch on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The four-day launch window opens no earlier than Wednesday, Feb. 26.

      Among the items on Intuitive Machines’ lander, the IM-2 mission will be one of the first on site, or in-situ, demonstrations of resource utilization on the Moon. A drill and mass spectrometer will measure the potential presence of volatiles or gases from lunar soil in Mons Mouton, a lunar plateau near the Moon’s South Pole. In addition, a passive Laser Retroreflector Array on the top deck of the lander will bounce laser light back at any orbiting or incoming spacecraft to give future spacecraft a permanent reference point on the lunar surface. Other technology instruments on this delivery will demonstrate a robust surface communications system and deploy a propulsive drone that can hop across the lunar surface.

      Launching as a rideshare with the IM-2 delivery, NASA’s Lunar Trailblazer spacecraft also will begin its journey to lunar orbit, where it will map the distribution of the different forms of water on the Moon.

      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA is one of many customers for these flights.

      For updates, follow on:
      https://blogs.nasa.gov/artemis
      -end-
      Alise Fisher / Jasmine Hopkins
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov / jasmine.s.hopkins@nasa.gov

      Natalia Riusech / Nilufar Ramji
      Johnson Space Center, Houston
      281-483-5111
      nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov

      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-867-2468
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Jan 31, 2025 LocationNASA Headquarters Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Missions Science Mission Directorate Space Technology Mission Directorate View the full article
    • By NASA
      An FVR90 unmanned aerial vehicle (UAV) lifts off from the Monterey Bay Academy Airport near Watsonville, California, during the Advanced Capabilities for Emergency Response Operations (ACERO) Shakedown Test in November 2024.NASA/Don Richey NASA is collaborating with the wildfire community to provide tools for some of the most challenging aspects of firefighting – particularly aerial nighttime operations.  
      In the future, agencies could more efficiently use drones, both remotely piloted and fully autonomous, to help fight wildfires. NASA recently tested technologies with teams across the country that will enable aircraft – including small drones and helicopters outfitted with autonomous technology for remote piloting – to monitor and fight wildfires 24 hours a day, even during low-visibility conditions. 
      Current aerial firefighting operations are limited to times when aircraft have clear visibility – otherwise, pilots run the risk of flying into terrain or colliding with other aircraft. NASA-developed airspace management technology will enable drones and remotely piloted aircraft to operate at night, expanding the window of time responders have to aerially suppress fires.
      “We’re aiming to provide new tools – including airspace management technologies – for 24-hour drone operations for wildfire response,” said Min Xue, project manager of the Advanced Capabilities for Emergency Response Operations (ACERO) project within NASA’s Aeronautics Research Mission Directorate. “This testing will provide valuable data to inform how we mature this technology for eventual use in the field.” 
      Over the past year, ACERO researchers developed a portable airspace management system (PAMS) drone pilots can use to safely send aircraft into wildfire response operations when operating drones from remote control systems or ground control stations.  
      Each PAMS, roughly the size of a carry-on suitcase, is outfitted with a computer for airspace management, a radio for sharing information among PAMS units, and an Automatic Dependent Surveillance-Broadcast receiver for picking up nearby air traffic – all encased in a durable and portable container. 
      NASA software on the PAMS allows drone pilots to avoid airborne collisions while remotely operating aircraft by monitoring and sharing flight plans with other aircraft in the network. The system also provides basic fire location and weather information. A drone equipped with a communication device acts as an airborne communication relay for the ground-based PAMS units, enabling them to communicate with each other without relying on the internet.  
      Engineers fly a drone at NASA’s Langley Research Center in Hampton, Virginia, to test aerial coordination capabilities.NASA/Mark Knopp To test the PAMS units’ ability to share and display vital information, NASA researchers placed three units in different locations outside each other’s line of sight at a hangar at NASA’s Ames Research Center in California’s Silicon Valley. Researchers stationed at each unit entered a flight plan into their system and observed that each unit successfully shared flight plans with the others through a mesh radio network. 
      Next, researchers worked with team members in Virginia to test an aerial communications radio relay capability. 
      Researchers outfitted a long-range vertical takeoff and landing aircraft with a camera, computer, a mesh radio, and an Automatic Dependent Surveillance-Broadcast receiver for air traffic information. The team flew the aircraft and two smaller drones at NASA’s Langley Research Center in Hampton, Virginia, purposely operating them outside each other’s line of sight.  
      The mesh radio network aboard the larger drone successfully connected with the small drones and multiple radio units on the ground. 
      Yasmin Arbab front-right frame, Alexey Munishkin, Shawn Wolfe, with Sarah Mitchell, standing behind, works with the Advanced Capabilities for Emergency Response Operations (ACERO) Portable Airspace Management System (PAMS) case at the Monterey Bay Academy Airport near Watsonville, California.NASA/Don Richey NASA researchers then tested the PAMS units’ ability to coordinate through an aerial communications relay to simulate what it could be like in the field.  
      At Monterey Bay Academy Airport in Watsonville, California, engineers flew a winged drone with vertical takeoff and landing capability by Overwatch Aero, establishing a communications relay to three different PAMS units. Next, the team flew two smaller drones nearby.  
      Researchers tested the PAMS units’ ability to receive communications from the Overwatch aircraft and share information with other PAMS units. Pilots purposely submitted flight plans that would conflict with each other and intentionally flew the drones outside preapproved flight plans. 
      The PAMS units successfully alerted pilots to conflicting flight plans and operations outside preapproved zones. They also shared aircraft location with each other and displayed weather updates and simulated fire location data. 
      The test demonstrated the potential for using PAM units in wildfire operations.  
      “This testing is a significant step towards improving aerial coordination during a wildfire,” Xue said. “These technologies will improve wildfire operations, reduce the impacts of large wildfires, and save more lives,” Xue said.  
      This year, the team will perform a flight evaluation to further mature these wildfire technologies. Ultimately, the project aims to transfer this technology to the firefighting community community. 
      This work is led by the ACERO project under NASA’s Aeronautics Research Mission Directorate and supports the agency’s Advanced Air Mobility mission.  
      View the full article
  • Check out these Videos

×
×
  • Create New...