Jump to content

Jesse Walsh: Possibility at the Cutting Edge of Flight


Recommended Posts

  • Publishers
Posted
A man with blond hair and beard smiles at the camera in a portrait.
Jesse Walsh helps to bring people together in his work with project formulation management. “I try to build trust between team members by understanding everyone’s incentives and making sure all team members understand the different incentives,” he said. “We may have different angles of approach, but we all have the same goal.”
Credits: NASA’s Goddard Space Flight Center/William Hrybyk

Name: Jesse Walsh

Formal Job Classification: Project Formulation Manager

Organization: Project Formulation and Development Office, Flight Projects Directorate (Code 401.0)

What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?

As a formulation manager, I am the project manager in the room as we are designing science space flight missions. We develop proposals to be competed on the agency level against other NASA centers, and outside institutions.

I am also our office’s representative on the Earth science line of business.

Two men smile and hold a certificate between them.
“I help everyone negotiate a balance that fits within the cost and schedule,” said Walsh. “The diversity between and among scientists, engineers, and financial experts is what creates NASA’s innovative solutions.”
Credits: NASA’s Goddard Space Flight Center/William Hrybyk

What is your background?

In 2000, I graduated from the U.S. Naval Academy with a B.S. in mechanical engineering. In the Navy I went to flight school in Pensacola, Florida, and became a naval flight officer. I was the “Goose,” not “Maverick,” in the P-3 Orion, a four-engine prop plane that primarily hunts for submarines. I was then stationed in Hawaii as part of Patrol Squadron 9, that deployed to the Far East and Middle East. Next, I worked at the Naval Research Lab in Washington, D.C., as a project officer for science experiments on P-3s from Patuxent River Naval Air Station in Patuxent River, Maryland.

I developed migraines that disqualified me from flying. In 2007, I got a master’s in civil engineering project management from the University of Maryland. I then worked in Bethesda, Maryland, constructing buildings around the beltway, as a physics teacher at our local high school, and as a project manager of secure facilities with the Army Corps of Engineers.

In 2016, I became the assistant branch head for facilities planning at Goddard. I later entered the Flight Projects Development Program, a two-year project manager training program, during which time I worked at the Flight Projects Development Office and as the payload manager for Space Infrastructure Dexterous Robot (SPIDER), a payload on OSAM-1. I had a proposal selected for a second step, and I came back to PFDO to work proposals.

Why is this your dream job?

We are on the cutting edge of what will fly. We are designing the missions and figuring out what the world of possible will be in space in five to seven years. Scientists come to the table with ideas and engineers make those ideas reality. I make sure the whole team is working together and that all these ideas and solutions fit within our budget and schedule. We make ideas realities.

How do you translate between scientists and engineers?

It is primarily about understanding incentives. Everyone is thinking differently with different solutions, but we have the same goal. Some scientists have had an idea for years, but the idea still has to be workable. If the resulting instrument or spacecraft fails, technical issues are often the first to be examined. I help the engineers push what they are comfortable making and help the scientists understand the limits of technology.

Please talk about the competing pressures of your job.

We are responsible for taxpayer’s money. If one thing goes wrong, even on a smaller mission, the monetary loss can run into many millions. The missions we build have cost limits. We fit cutting edge science into a cost-limited opportunity.

NASA is extremely thorough. We safeguard taxpayer funds, but also push cutting-edge science.

We are on a seesaw. The engineers are more focused on technical solutions while the scientists are more focused on scientific results. I help everyone negotiate a balance that fits within the cost and schedule. The diversity between and among scientists, engineers, and financial experts is what creates NASA’s innovative solutions.

Four people in work clothes posing in front of a brown wall.
“We are on the cutting edge of what will fly,” said Jesse Walsh about his work as a project formulation manager. “We are designing the missions and figuring out what the world of possible will be in space in five to seven years.”
Credits: NASA’s Goddard Space Flight Center/William Hrybyk

What are some of your negotiating techniques?

I try to build trust between team members by understanding everyone’s incentives and making sure all team members understand the different incentives. We may have different angles of approach, but we all have the same goal. People are more likely to compromise the means if they know we will end up at the same place.

What is your proudest accomplishment?

I am proudest of our Dorado proposal because it was cutting edge science. We were trying to discover where heavy metals like gold are created in the universe. We were trying to prove that we could do fundamental science on a very lean budget, $35 million.

We did not win the final proposal, but I was extremely proud of our team, a very small, high-functioning team, that made us feel like we could discover the world.

You recently transferred to support the Geospace Dynamics Constellation (GDC) mission. What do you most enjoy about your new role?

I am still learning what I don’t know about GDC. I am finding is fascinating to see how the plans that are made in early stages of formulation change and adapt as they run into unforeseen obstacles during implementation. I am really enjoying being part of a small, high performing team, that is mission focused.

A man in a purple T-shirt holds a fishing net over one shoulder and smiles.
“We fit cutting-edge science into a cost-limited opportunity,” said Jesse Walsh of his work in project formulation management.”NASA is extremely thorough. We safeguard taxpayer funds, but also push cutting-edge science.”
Credits: Courtesy of Jesse Walsh

Who is your favorite author?

I married a librarian, and books and stories are fundamental parts of our life. I love Hemingway because he portrays extremely complex, emotional scenarios in very simplistic terms.

Who is your science hero?

My high school physics teacher, Mr. Finkbeiner, who taught me that you understand science in your gut, not your head. Science is not memorizing equations; it is understanding how the world around you works.

What are your hobbies?

I love flyfishing on the Chesapeake’s tidal rivers and also on fresh water for trout. Flyfishing involves actively engaging with nature; reading the water and the tides, figuring out nature’s puzzle and trying to crack the code.

What is your “six-word memoir”? A six-word memoir describes something in just six words.

I can’t wait for what’s next! 

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

A graphic with a collection of people's portraits grouped together in front of a soft blue galaxy background. The people come from various races, ethnicities, and genders. A soft yellow star shines in the upper left corner, and the stylized text "Conversations with Goddard" is in white on the far right.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA's SpaceX Crew-9 Post-Flight News Conference
    • By European Space Agency
      Two spacecraft flying as one – that is the goal of European Space Agency’s Proba-3 mission. Earlier this week, the eclipse-maker moved a step closer to achieving that goal, as both spacecraft aligned with the Sun, maintaining their relative position for several hours without any control from the ground.
      View the full article
    • By NASA
      On March 23, 1965, the United States launched the Gemini III spacecraft with astronauts Virgil “Gus” Grissom and John Young aboard, America’s first two-person spaceflight. Grissom earned the honor as the first person to enter space twice and Young as the first member of the second group of astronauts to fly in space. During their three-orbit flight they carried out the first orbital maneuvers of a crewed spacecraft, a critical step toward demonstrating rendezvous and docking. Grissom and Young brought Gemini 3 to a safe splashdown in the Atlantic Ocean. Their ground-breaking mission led the way to nine more successful Gemini missions in less than two years to demonstrate the techniques required for a Moon landing. Gemini 3 marked the last spaceflight controlled from Cape Kennedy, that function shifting permanently to a new facility in Houston. 

      In one of the first uses of the auditorium at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, managers announce the prime and backup Gemini III crews. NASA NASA astronauts Virgil “Gus” Grissom and John Young, the Gemini III prime crew. NASA Grissom, foreground, and Young in their capsule prior to launch.NASA On April 13, 1964, just five days after the uncrewed Gemini I mission, in the newly open auditorium at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Director Robert Gilruth introduced the Gemini III crew to the press. NASA assigned Mercury 4 veteran Grissom and Group 2 astronaut Young as the prime crew, with Mercury 8 veteran Walter Schirra and Group 2 astronaut Thomas Stafford serving as their backups. The primary goals of Project Gemini included proving the techniques required for the Apollo Program to fulfil President John F. Kennedy’s goal of landing a man on the Moon and returning him safely to Earth before the end of the 1960s. Demonstrating rendezvous and docking between two spacecraft ranked as a high priority for Project Gemini.  

      Liftoff of Gemini III.NASA The uncrewed Gemini I and II missions validated the spacecraft’s design, reliability, and heat shield, clearing the way to launch Gemini III with a crew. On March 23, 1965, after donning their new Gemini spacesuits, Grissom and Young rode the transfer van to Launch Pad 19 at Cape Kennedy in Florida. They rode the elevator to their Gemini spacecraft atop its Titan II rocket where technicians assisted them in climbing into the capsule. At 9:24 a.m. EST, the Titan’s first stage engines ignited, and Gemini III rose from the launch pad. 

      The Mission Control Center at Cape Kennedy in Florida during Gemini III, controlling a human spaceflight for the final time.NASA The Mission Control Center at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, monitoring the Gemini III mission.NASA Five and a half minutes after launch, the Titan II’s second stage engine cut off and the spacecraft separated to begin its orbital journey. Grissom became the first human to enter space a second time. While engineers monitored the countdown from the Launch Pad 19 blockhouse, once in orbit flight controllers in the Mission Control Center at the Cape took over. Controllers in the new Mission Control Center at the Manned Spacecraft Center, now the Johnson Space Center in Houston, staffed consoles and monitored the mission in a backup capacity. Beginning with Gemini IV, control of all American human spaceflights shifted permanently to the Houston facility. 
      Gemini III entered an orbit of 100 miles by 139 miles above the Earth. Near the end of the first orbit, while passing over Texas, Grissom and Young fired their spacecraft’s thrusters for one minute, 14 seconds. “They appear to be firing good,” said Young, confirming the success of the maneuver. The change in velocity adjusted their orbit to 97 miles by 105 miles. A second burn 45 minutes later altered the orbital inclination by 0.02 degrees. Another task for the crew involved testing new food and packaging developed for Gemini. As an off-the-menu item, Young had stowed a corned beef on rye sandwich in his suit pocket before flight, and both he and Grissom took a bite before stowing it away, concerned about crumbs from the sandwich floating free in the cabin.
      Shortly after splashdown, Gemini III astronaut Virgil “Gus” Grissom exits the spacecraft as crewmate John Young waits in the life raft. NASA Sailors hoist the Gemini III spacecraft aboard the prime recovery ship U.S.S. Intrepid.NASA Young, left, and Grissom stand with their spacecraft aboard Intrepid. NASA Near the end of their third revolution, Grissom and Young prepared for the retrofire burn to bring them out of orbit. They oriented Gemini III with its blunt end facing forward and completed a final orbital maneuver to lower the low point of their orbit to 45 miles, ensuring reentry even if the retrorockets failed to fire. They jettisoned the rearmost adapter section, exposing the retrorockets that fired successfully, bringing the spacecraft out of orbit. They jettisoned the retrograde section, exposing Gemini’s heat shield. Minutes later, they encountered the upper layers of Earth’s atmosphere at 400,000 feet, and he buildup of ionized gases caused a temporary loss of communication between the spacecraft and Mission Control. At 50,000 feet, Grissom deployed the drogue parachute to stabilize and slow the spacecraft, followed by the main parachute at 10,600 feet. Splashdown occurred in the Atlantic Ocean near Grand Turk Island, about 52 miles short of the planned point, after a flight of 4 hours, 52 minutes, 31 seconds. 
      Gemini III astronauts Virgil “Gus” Grissom, left, and John Young upon their return to Cape Kennedy in Florida. NASA Grissom and Young at the postflight press conference. NASA The welcome home ceremony for Grissom and Young at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston.NASA A helicopter recovered Grissom and Young and delivered them to the deck of the U.S.S. Intrepid, arriving there one hour and 12 minutes after splashdown. On board the carrier, the astronauts received a medical checkup and a telephone call from President Lyndon B. Johnson. The ship sailed to pick up the spacecraft and sailors hoisted it aboard less than three hours after landing. The day after splashdown, Grissom and Young flew to Cape Kennedy for debriefings, a continuation of the medical examinations begun on the carrier, and a press conference. Following visits to the White House, New York, and Chicago, the astronauts returned home to Houston on March 31. The next day, Gilruth welcomed them back to the Manned Spacecraft Center, where in front of the main administration building, workers raised an American flag that Grissom and Young had carried on their mission. That flag flew during every subsequent Gemini mission. 

      During the Gemini III welcome home ceremony in front of the main administration building at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, workers raise an American flag that the astronauts had carried on their mission. NASA
      Explore More
      5 min read 60 Years Ago: Gemini 1 Flies a Successful Uncrewed Test Flight
      Article 12 months ago 6 min read 60 Years Ago: Uncrewed Gemini 2 Paves the Way for the First Crewed Mission
      Article 2 months ago 6 min read Artemis I Mission Control at a Glance
      Article 3 years ago View the full article
    • By NASA
      As part of NASA’s Advanced Capabilities for Emergency Response Operations flight tests in November 2024, Overwatch Aero flies a vertical takeoff and landing aircraft in Watsonville, California.Credit: NASA NASA will conduct a live flight test of aircraft performing simulated wildland fire response operations using a newly developed airspace management system at 9 a.m. PDT on Tuesday, March 25, in Salinas, California.
      NASA’s new portable airspace management system, part of the agency’s Advanced Capabilities for Emergency Response Operations (ACERO) project, aims to significantly expand the window of time crews have to respond to wildland fires. The system provides the air traffic awareness needed to safely send aircraft – including drones and remotely piloted helicopters – into wildland fire operations, even during low-visibility conditions. Current aerial firefighting operations are limited to times when pilots have clear visibility, which lowers the risk of flying into the surrounding terrain or colliding with other aircraft. This restriction grounds most aircraft at night and during periods of heavy smoke.
      During this inaugural flight test, researchers will use the airspace management system to coordinate the flight operations of two small drones, an electric vertical takeoff and landing aircraft, and a remotely piloted aircraft that will have a backup pilot aboard. The drones and aircraft will execute examples of critical tasks for wildland fire management, including weather data sharing, simulated aerial ignition flights, and communications relay.
      Media interested in viewing the ACERO flight testing must RSVP by 4 p.m. Friday, March 21, to the NASA Ames Office of Communications by email at: arc-dl-newsroom@mail.nasa.gov or by phone at 650-604-4789. NASA will release additional details, including address and arrival logistics, to media credentialed for the event. A copy of NASA’s media accreditation policy is online.
      NASA’s ACERO researchers will use data from the flight test to refine the airspace management system. The project aims to eventually provide this technology to wildland fire crews for use in the field, helping to save lives and property. This project is managed at NASA’s Ames Research Center in California’s Silicon Valley.
      For more information on ACERO, visit:
      https://go.nasa.gov/4bYEzsD
      -end-
      Rob Margetta
      Headquarters, Washington
      202-358-1600
      robert.j.margetta@nasa.gov
      Hillary Smith
      Ames Research Center, Silicon Valley
      650-604-4789
      hillary.smith@nasa.gov
      Share
      Details
      Last Updated Mar 18, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Ames Research Center Advanced Capabilities for Emergency Response Operations Aeronautics Aeronautics Research Mission Directorate Flight Innovation View the full article
  • Check out these Videos

×
×
  • Create New...