Members Can Post Anonymously On This Site
World Photo Day: Behind the Scenes with Goddard’s Documentary Photographers
-
Similar Topics
-
By NASA
A group of attendees of the joint NASA-USGS workshop, Planetary Subsurface Exploration for Science and Resources, gathers for a photo at NASA’s Ames Research Center on Feb. 11, 2025. Workshop participants discussed observations, technologies, and operations needed to support new economies for terrestrial and off-world resources, including critical minerals.NASA/Brandon Torres Navarrete NASA and the U.S. Geological Survey (USGS) welcomed a community of government, industry, and international partners to explore current technology needs around natural resources – both on Earth and “off world.” During a workshop held in February at NASA’s Ames Research Center in California’s Silicon Valley, participants discussed technologies that will improve the ability to detect, assess, and develop resources, such as critical minerals and water ice to be found on our Moon, other planets and their moons, and asteroids.
More than 300 attendees, taking part in person and virtually, worked to define the elements needed to find and map resources beyond Earth to support the growing space economy. These include sensors to image the subsurface of planetary bodies, new platforms for cost-effective operations, and technologies that enable new concepts of operation for these systems.
Scientific studies and measurements of off-world sites will be key to detecting and characterizing resources of interest, creating an important synergy with technology goals and helping to answer fundamental science questions as well.
The workshop was the third in a series called Planetary Subsurface Exploration for Science and Resources. By leveraging the expertise gained from decades of resource exploration on this planet and that of the space technology and space mission communities, NASA and USGS aim to spark collaboration across industry, government, and academia to develop new concepts and technologies.
Participants in the NASA-USGS off-world resources workshop take part in a panel review of technology opportunities, Feb. 13, 2025, at NASA’s Ames Research Center. The panelists were Dave Alfano, chief of the Intelligent Systems Division at NASA’s Ames Research Center in California’s Silicon Valley (left); Rob Mueller, a senior technologist and principal investigator in the Exploration Research and Technology Programs Directorate at NASA’s Kennedy Space Center in Florida; Christine Stewart, CEO at Austmine Limited in Australia; Gerald Sanders, in-situ resource utilization system capability lead for NASA’s Space Technology Mission Directorate based at NASA’s Johnson Space Center in Houston; and Jonathon Ralston, Integrated Mining Research Team lead at Australia’s Commonwealth Scientific and Industrial Research Organisation. NASA/Brandon Torres Navarrete
View the full article
-
By NASA
LOCATION: Texas State Capitol – Austin, Texas SUBJECT: Space Day activities at the Texas State Capitol in Austin, Texas PHOTOGRAPHER: Lauren HarnettNASA March 17, 2025
NASA is heading back to the state capitol in March for Space Day Texas, a recognition of achievements throughout Texas and a look ahead to the impact future human space exploration has on the Lone Star state.
The two-day schedule of events and exhibits focusing on exploration, astronauts, and science, technology, engineering, and math education will include astronaut visits, interactive exhibits, and legislative proclamations.
NASA’s Johnson Space Center in Houston will share its accomplishments on the Capitol grounds from 9 a.m. to 4 p.m. CDT Tuesday, March 25, joining academic and commercial partners from across the state to share Texas’ blueprint for expanding humanity’s frontier in space.
On Monday, March 24, exhibits will feature the Texas High School Aerospace Scholars program at the University of Texas Elementary Charter school, along with NASA Johnson’s Office of STEM Engagement, Orion program, and Lockheed Martin. Interactive events will feature NASA STEM engagement programs and hands-on exhibits.
At 10 a.m. Tuesday, March 25, proclamations celebrating NASA’s 25th anniversary of continuous human presence on the International Space Station, the High School Aerospace Scholars program, and the continued progression of the Artemis campaign through NASA’s commercialization of cargo, crew, landers, spacesuits, and rovers will be read in the Texas House and Senate chambers, respectively. Following the proclamations, an Artemis II crew astronaut will participate in a live question and answer session on the front steps of the Capitol.
NASA’s impact in Texas is strong. NASA Johnson has served as the iconic site for some of the greatest moments in American history, from landing humans on the Moon to assembling the International Space Station.
For more than 60 years, NASA has led the world in human space exploration. Today, it is testing technologies on the Space Station that will help humanity push forward to the Moon and Mars. NASA’s workforce in Texas includes more than 10,000 aerospace employees and more than $2 billion in contracts and federal salaries in 2024.
Learn more about NASA Johnson and its impact in Texas at:
https://www.nasa.gov/johnson
-end-
Kelly Humphries
Johnson Space Center, Houston
281-483-5111
kelly.o.humphries@nasa.gov
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A NASA exhibit of SLS (Space Launch System), which will return humanity to the Moon, is displayed in front of the Alabama Capitol in Montgomery during Alabama Space Day 2023 on April 11, 2023. NASA’s Marshall Space Flight Center in Huntsville, Alabama, the U.S. Space and Rocket Center, and aerospace industry partners, will host the 2025 Alabama Space Day in Montgomery on Tuesday, Feb. 25 to celebrate Alabama’s robust aerospace contributions and capabilities. The public and news media are invited to attend. NASA/Hannah Maginot Media are invited to attend the 2025 Alabama Space Day from 9:30 a.m. to 4:30 p.m. CST on Tuesday, Feb. 25, at the Alabama State Capitol in Montgomery.
NASA’s Marshall Space Flight Center in Huntsville, Alabama, the U.S. Space and Rocket Center, and aerospace industry partners will host the annual public event to celebrate Alabama’s robust aerospace contributions and capabilities, which provide significant economic benefits for the entire state.
Area middle school and high school students will have an opportunity to speak with NASA astronaut Loral O’Hara and participate in activities and exhibits. The event also will include a reading of a Space Day resolution by Alabama legislators with NASA Marshall Director Joseph Pelfrey, highlighting Alabama’s contributions to space exploration.
Media interested in interviewing NASA Marshall officials or attending NASA events should contact Hannah Maginot at hannah.l.maginot@nasa.gov or 256-932-1937.
Space Day 2025 exhibitors include: NASA Marshall, Teledyne Brown Engineering, KBR, Special Aerospace Services (SAS), Sentar, Blue Origin, Astrion, ULA, The University of Alabama in Huntsville’s Propulsion Research Center, Northrop Grumman, Lockheed Martin, and Boeing.
Media opportunities for the day include:
9:30 a.m. to 4:30 p.m. – Exhibits and STEM activities
Location: South Capitol Lawn and Tunnel between Capitol Building and State House
10:30 to 11 a.m. – Alabama Space Day 2025 Proclamation Ceremony
Location: Capitol Auditorium
11 to 11:30 a.m. – Alabama Space Authority Meeting
Location: Capitol Auditorium
1 to 2 p.m. – Resolution readings on the House and Senate Floors
About the NASA Marshall Space Flight Center
NASA’s Marshall Space Flight Center is celebrating 65 years of blending legacy with innovation, advancing space exploration and scientific discovery through collaboration, engineering excellence, and technical solutions that take humanity beyond tomorrow’s horizon.
For more information on NASA Marshall, visit https://www.nasa.gov/marshall.
Media Contact:
Hannah Maginot
Marshall Space Flight Center, Huntsville, Ala.
hannah.l.maginot@nasa.gov
256-932-1937
Share
Details
Last Updated Feb 24, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
Marshall Space Flight Center Explore More
6 min read NASA Marshall Reflects on 65 Years of Ingenuity, Teamwork
Article 2 hours ago 6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon
Article 2 weeks ago 5 min read NASA Readies Moon Rocket for the Future with Manufacturing Innovation
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
With two months to go before flight, the Apollo 13 prime crew of James Lovell, Thomas Mattingly, Fred Haise, and backups John Young, John Swigert, and Charles Duke continued to train for the 10-day mission planned to land in the Fra Mauro highlands region of the Moon. Engineers continued to prepare the Saturn V rocket and spacecraft at the launch pad for the April 11, 1970, liftoff and completed the Flight Readiness Test of the vehicle. All six astronauts spent many hours in flight simulators training while the Moon walkers practiced landing the Lunar Module and rehearsed their planned Moon walks. The crew for the next Moon landing mission, Apollo 14, participated in a geology field trip as part of their training for the flight then planned for October 1970. Meanwhile, NASA released Apollo 12 lunar samples to scientists and the Apollo 12 crew set off on a Presidential world goodwill tour.
At NASA’s Kennedy Space Center in Florida, engineers completed the Flight Readiness Test of the Apollo 13 Saturn V on Feb. 26. The test ensured that all systems are flight ready and compatible with ground support equipment, and the astronauts simulated portions of the countdown and powered flight. Successful completion of the readiness test cleared the way for a countdown dress rehearsal at the end of March.
John Young prepares for a flight aboard the Lunar Landing Training Vehicle.NASA John Young after a training flight aboard the landing trainer. NASA Fred Haise prepares for a flight at the Lunar Landing Research Facility. NASA One of the greatest challenges astronauts faced during a lunar mission entailed completing a safe landing on the lunar surface. In addition to time spent in simulators, Apollo mission commanders and their backups trained for the final few hundred feet of the descent using the Lunar Landing Training Vehicle at Ellington Air Force Base near the Manned Spacecraft Center, now NASA’s Johnson Space Center, in Houston. Bell Aerosystems of Buffalo, New York, built the trainer for NASA to simulate the flying characteristics of the Lunar Module. Lovell and Young completed several flights in February 1970. Due to scheduling constraints with the trainer, lunar module pilots trained for their role in the landing using the Lunar Landing Research Facility at NASA’s Langley Research Center in Hampton, Virginia. Haise and Duke completed training sessions at the Langley facility in February.
Charles Duke practices Lunar Module egress during a KC-135 parabolic flight. NASA Charles Duke rehearses unstowing equipment from the Lunar Module during a KC-135 parabolic flight. NASA The astronauts trained for moonwalks with parabolic flights aboard NASA’s KC-135 aircraft that simulated the low lunar gravity, practicing their ladder descent to the surface. On the ground, they rehearsed the moonwalks, setting up the American flag and the large S-band communications antenna, and collecting lunar samples. Engineers improved their spacesuits to make the expected longer spacewalks more comfortable for the crew members by installing eight-ounce bags of water inside the helmets for hydration.
James Lovell, left, and Fred Haise practice setting up science equipment, the American flag, and the S-band antenna.NASA Lovell, left, and Haise practice collecting rock samples. NASA John Young, left, and Charles Duke train to collect rock samples. NASA Fred Haise, left, and James Lovell practice lowering the Apollo Lunar Surface Experiment Package from the Lunar Module.NASA Lovell, left, and Haise practice setting up the experiments. NASA Lovell, left, and Haise practice drilling for the Heat Flow Experiment. NASA During their 35 hours on the Moon’s surface, Lovell and Haise planned to conduct two four-hour spacewalks to set up the Apollo Lunar Surface Experiment Package (ALSEP), a suite of four investigations designed to collect data about the lunar environment after the astronauts’ departure, and to conduct geologic explorations of the landing site. The four experiments included the:
Charged Particle Lunar Environment Experiment designed to measure the flexes of charged particles Cold Cathode Gauge Experiment designed to measure the pressure of the lunar atmosphere Heat Flow Experiment designed to make thermal measurements of the lunar subsurface Passive Seismic Experiment designed to measure any moonquakes, either naturally occurring or caused by artificial means As an additional investigation, the astronauts planned to deploy and retrieve the Solar Wind Composition experiment, a sheet of aluminum foil to collect particles from the solar wind for analysis by scientists back on Earth after about 20 hours of exposure on the lunar surface.
Apollo 14 astronauts Eugene Cernan, left, Joe Engle, Edgar Mitchell, and Alan Shepard with geologist Richard Jahns in the Pinacates Mountains of northern Mexico. NASA Shepard, left, Engle, Mitchell, and Cernan training with the Modular Equipment Transporter, accompanied by geologist Jahns. NASA With one lunar mission just two months away, NASA continued preparations for the following flight, Apollo 14, then scheduled for October 1970 with a landing targeted for the Littrow region of the Moon, an area scientists believed to be of volcanic origin. Apollo 14 astronauts Alan Shepard, Stuart Roosa, and Edgar Mitchell and their backups Eugene Cernan, Ronald Evans, and Joe Engle learned spacecraft systems in the simulators. Accompanied by a team of geologists led by Richard Jahns, Shepard, Mitchell, Cernan, and Engle participated in a geology expedition to the Pinacate Mountain Range in northern Mexico Feb. 14-18, 1970. The astronauts practiced using the Modular Equipment Transporter, a two-wheeled conveyance to transport tools and samples on the lunar surface.
Mail out of the Apollo 12 lunar samples. Apollo 12 astronauts Charles Conrad, left, Richard Gordon, and Alan Bean ride in a motorcade in Lima, Peru.NASA On Feb. 13, 1970, NASA began releasing Apollo 12 lunar samples to 139 U.S. and 54 international scientists in 16 countries, a total of 28.6 pounds of material. On Feb. 16, Apollo 12 astronauts Charles Conrad, Richard Gordon, and Alan Bean, accompanied by their wives and NASA and State Department officials, departed Houston’s Ellington Air Force Base for their 38-day Bullseye Presidential Goodwill World Tour. They first traveled to Latin America, making stops in Venezuela, Peru, Chile, and Panama before continuing on to Europe, Africa, and Asia.
The groundbreaking science and discoveries made during Apollo missions has pushed NASA to explore the Moon more than ever before through the Artemis program. Apollo astronauts set up mirror arrays, or “retroreflectors,” on the Moon to accurately reflect laser light beamed at them from Earth with minimal scattering or diffusion. Retroreflectors are mirrors that reflect the incoming light back in the same incoming direction. Calculating the time required for the beams to bounce back allowed scientists to precisely measure the Moon’s shape and distance from Earth, both of which are directly affected by Earth’s gravitational pull. More than 50 years later, on the cusp of NASA’s crewed Artemis missions to the Moon, lunar research still leverages data from those Apollo-era retroreflectors.
Explore More
10 min read 55 Years Ago: Apollo 13, Preparations for the Third Moon Landing
Article 2 months ago 23 min read 55 Years Ago: Apollo 12 Makes a Pinpoint Landing on the Moon
Article 3 months ago 9 min read 60 Years Ago: The First Flight of the Lunar Landing Research Vehicle
Article 4 months ago View the full article
-
By NASA
X-ray: NASA/CXC/Penn State Univ./L. Townsley et al.; Infrared: NASA/JPL-CalTech/SST; Optical: NASA/STScI/HST; Radio: ESO/NAOJ/NRAO/ALMA; Image Processing: NASA/CXC/SAO/J. Schmidt, N. Wolk, K. Arcand A bouquet of thousands of stars in bloom has arrived. This composite image contains the deepest X-ray image ever made of the spectacular star forming region called 30 Doradus.
By combining X-ray data from NASA’s Chandra X-ray Observatory (blue and green) with optical data from NASA’s Hubble Space Telescope (yellow) and radio data from the Atacama Large Millimeter/submillimeter Array (orange), this stellar arrangement comes alive.
X-ray: NASA/CXC/Penn State Univ./L. Townsley et al.; Infrared: NASA/JPL-CalTech/SST; Optical: NASA/STScI/HST; Radio: ESO/NAOJ/NRAO/ALMA; Image Processing: NASA/CXC/SAO/J. Schmidt, N. Wolk, K. Arcand Otherwise known as the Tarantula Nebula, 30 Dor is located about 160,000 light-years away in a small neighboring galaxy to the Milky Way known as the Large Magellanic Cloud (LMC). Because it one of the brightest and populated star-forming regions to Earth, 30 Dor is a frequent target for scientists trying to learn more about how stars are born.
With enough fuel to have powered the manufacturing of stars for at least 25 million years, 30 Dor is the most powerful stellar nursery in the local group of galaxies that includes the Milky Way, the LMC, and the Andromeda galaxy.
The massive young stars in 30 Dor send cosmically strong winds out into space. Along with the matter and energy ejected by stars that have previously exploded, these winds have carved out an eye-catching display of arcs, pillars, and bubbles.
A dense cluster in the center of 30 Dor contains the most massive stars astronomers have ever found, each only about one to two million years old. (Our Sun is over a thousand times older with an age of about 5 billion years.)
This new image includes the data from a large Chandra program that involved about 23 days of observing time, greatly exceeding the 1.3 days of observing that Chandra previously conducted on 30 Dor. The 3,615 X-ray sources detected by Chandra include a mixture of massive stars, double-star systems, bright stars that are still in the process of forming, and much smaller clusters of young stars.
There is a large quantity of diffuse, hot gas seen in X-rays, arising from different sources including the winds of massive stars and from the gas expelled by supernova explosions. This data set will be the best available for the foreseeable future for studying diffuse X-ray emission in star-forming regions.
The long observing time devoted to this cluster allows astronomers the ability to search for changes in the 30 Dor’s massive stars. Several of these stars are members of double star systems and their movements can be traced by the changes in X-ray brightness.
A paper describing these results appears in the July 2024 issue of The Astrophysical Journal Supplement Series. NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory.
Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description
This release features a highly detailed composite image of a star-forming region of space known as 30 Doradus, shaped like a bouquet, or a maple leaf.
30 Doradus is a powerful stellar nursery. In 23 days of observation, the Chandra X-ray telescope revealed thousands of distinct star systems. Chandra data also revealed a diffuse X-ray glow from winds blowing off giant stars, and X-ray gas expelled by exploding stars, or supernovas.
In this image, the X-ray wind and gas takes the shape of a massive purple and pink bouquet with an extended central flower, or perhaps a leaf from a maple tree. The hazy, mottled shape occupies much of the image, positioned just to our left of center, tilted slightly to our left. Inside the purple and pink gas and wind cloud are red and orange veins, and pockets of bright white light. The pockets of white light represent clusters of young stars. One cluster at the heart of 30 Doradus houses the most massive stars astronomers have ever found.
The hazy purple and pink bouquet is surrounded by glowing dots of green, white, orange, and red. A second mottled purple cloud shape, which resembles a ring of smoke, sits in our lower righthand corner.
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
Explore More
4 min read NASA Successfully Joins Sunshade to Roman Observatory’s ‘Exoskeleton’
Article 20 mins ago 5 min read NASA Scientists Spot Candidate for Speediest Exoplanet System
Article 2 days ago 5 min read Euclid Discovers Einstein Ring in Our Cosmic Backyard
Article 2 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.