Jump to content

Jeremy Schnittman: Looking Into the Mystery of Black Holes


Recommended Posts

  • Publishers
Posted
Research Astrophysicist Jeremy David Schnittman
u0022The really interesting thing to me is how time theoretically acts strangely around black holes. According to Albert Einstein’s theory of gravity, black holes change the flow of time,u0022 said Jeremy Schnittman, Goddard research astrophysicist. u0022So much of how we experience the world is based on time, time marching steadily forward. Anything that changes that is a fascinating take on reality.u0022
u003cstrongu003eu003cemu003eCredits: NASA’s Goddard Space Flight Center / Rebecca Rothu003c/emu003eu003c/strongu003e

Name: Jeremy Schnittman

Formal Job Classification: Research astrophysicist

Organization: Gravitational Astrophysics Laboratory, Astrophysics Division (Code 663)

What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?

I try to understand the formation and properties of black holes. I also help develop ideas for new missions to study black holes.

What drew you to astrophysics?

I always liked science and math. The great thing about astrophysics is that it involves a little bit of everything – math, computer programming, physics, chemistry and even philosophy to understand the big picture, the enormity of space.

I have a B.A. in physics from Harvard, and a Ph.D. in physics from MIT. I came to Goddard in 2010 after two post-doctoral fellowships.

Explore how the extreme gravity of two orbiting supermassive black holes distorts our view. In this visualization, disks of bright, hot, churning gas encircle both black holes, shown in red and blue to better track the light source. The red disk orbits the larger black hole, which weighs 200 million times the mass of our Sun, while its smaller blue companion weighs half as much. Zooming into each black hole reveals multiple, increasingly warped images of its partner. Watch to learn more.
Credits: NASA’s Goddard Space Flight Center/Jeremy Schnittman and Brian P. Powell
Download high-resolution video and images from NASA’s Scientific Visualization Studio

As an astrophysicist, what do you think about?

I think of myself as a computational physicist as opposed to an experimental or observational physicist. I write many computer programs to do computer simulations of black holes. I also do a lot of theoretical physics, which is pencil and paper work. I think a lot about equations and math to understand black holes.

What is most philosophical about black holes to me is not so much what people most often think about, that their gravity is so strong that even light cannot escape. The really interesting thing to me is how time theoretically acts strangely around black holes. According to Albert Einstein’s theory of gravity, black holes change the flow of time. If you could get close enough to a black hole, theoretically you could go back and forth in time. All our experiments and observations seem to indicate that is how black holes might behave.

So much of how we experience the world is based on time, time marching steadily forward. Anything that changes that is a fascinating take on reality.

What do you tell the people you mentor?

I mentor undergraduate, graduate, and post graduate students in astrophysics. Since we are working remotely, I have students from all over the country. I help them with their research projects which mostly relate to black holes in some way. I also offer career advice and help them with their work-life balance. When possible, family comes first.

There are more people coming out of graduate school in astrophysics than there are jobs, so there are going to be many people who will not work for NASA or as a professor. Fortunately, there are a lot of other fascinating, related jobs, and I help guide the students there.

What do you do for fun?

I have a woodshop in our basement where I build furniture, dollhouses, toys, and other items for gifts. As a theoretical physicist, I don’t get to work in a lab. So it is nice to have some hands on experience.

I do a lot of hiking and cycling to exercise. I also enjoy spending time with my family.

Who is your favorite author?

Andy Weir is probably my favorite sci-fi author. I also love the epic naval historical fiction by Patrick O’Brian.

Who inspires you?

My childhood hero, who is still my scientific hero, is Albert Einstein. The more I work in astrophysics, the more he impresses me. Every single one of his predictions that we have been able to test has proven true. It may be a while, but someday I hope we prove his theories about time travel.

Also, I admire Kip Thorne, an American physicist from Cal Tech and recent Nobel laureate, who is “the man” when it comes to black holes. He is also a really nice, good guy, a real mensch. Very humble and down-to-earth. He is always extremely patient, kind and encouraging especially to the younger scientists. He is a good role model as I transition from junior to more senior status.

What is your one big dream?

I make a lot of predictions, so it would be exciting if one of my theories was proven correct. Hopefully someday.

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

A graphic with a collection of people's portraits grouped together in front of a soft blue galaxy background. The people come from various races, ethnicities, and genders. A soft yellow star shines in the upper left corner, and the stylized text u0022Conversations with Goddardu0022 is in white on the far right.
Conversations with Goddard

Conversations With Goddard is a collection of question and answer profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4493-4494: Just Looking Around
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on March 25, 2025 — sol 4491, or Martian day 4,491 of the Mars Science Laboratory mission — at 17:16:50 UTC. NASA/JPL-Caltech Written by Alex Innanen, atmospheric scientist at York University
      Earth planning date: Wednesday, March 26, 2025
      It’s my second shift of the week as the Environmental theme lead and keeper of the plan (a bit of a mouthful we shorten to ESTLK) and today started out feeling eerily similar to Monday. Once again, Curiosity is posing like a geologist, which means that once again we can’t unstow the arm and will be skipping contact science. The silver lining is that this means we have extra time to have a good look around.
      The plan also looks similar to Monday’s — targeted remote sensing on the first sol before driving away, and then untargeted remote sensing on the next. On sol 4493 we start our remote sensing, almost as remote as we can get, with a suprahorizon movie looking for clouds in the south. A dust-devil survey rounds out the sol’s environmental observations, and then the geology theme group can get down to the serious business of looking at rocks. For Mastcam this means observing a group of bedrock targets all called “Observatory Trail” (one of which you can see in the middle of the image above), pointing out some interesting veins in “Point Loma,” and casting their gaze out toward “Black Butte” (which I could not think of a fun pun for…). ChemCam has a LIBS observation of “Cholla,” as well as two long-distance observations of the Texoli Butte and the boxwork structures. Our second sol is a little more restrained, as untargeted sols tend to be. But Curiosity will still have plenty of energy after a good rest. We’re taking advantage of that with an extra-long dust-devil movie. Even though we’re in our cloudy season, we still sometimes see dust lifting, and having that extra time to look out for it increases our chances of catching a wind gust or a dust devil in action. Alongside that we also have a Mastcam tau observation to keep an eye on the amount of dust in the atmosphere, and wrap up with a ChemCam AEGIS activity to autonomously choose a LIBS target.
      Share








      Details
      Last Updated Mar 28, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4491-4492: Classic Field Geology Pose


      Article


      2 days ago
      3 min read Sols 4488-4490: Progress Through the Ankle-Breaking Terrain (West of Texoli Butte, Climbing Southward)


      Article


      4 days ago
      3 min read Sols 4486-4487: Ankle-Breaking Kind of Terrain!


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      5 min read
      Atomic Layer Processing Coating Techniques Enable Missions to See Further into the Ultraviolet
      Astrophysics observations at ultraviolet (UV) wavelengths often probe the most dynamic aspects of the universe. However, the high energy of ultraviolet photons means that their interaction with the materials that make up an observing instrument are less efficient, resulting in low overall throughput. New approaches in the development of thin film coatings are addressing this shortcoming by engineering the coatings of instrument structures at the atomic scale.
      Researchers at the NASA Jet Propulsion Laboratory (JPL) are employing atomic layer deposition (ALD) and atomic layer etching (ALE) to enable new coating technologies for instruments measuring ultraviolet light. Conventional optical coatings largely rely on physical vapor deposition (PVD) methods like evaporation, where the coating layer is formed by vaporizing the source material and then condensing it onto the intended substrate. In contrast, ALD and ALE rely on a cyclic series of self-limiting chemical reactions that result in the deposition (or removal) of material one atomic layer at a time. This self-limiting characteristic results in a coating or etchings that are conformal over arbitrary shapes with precisely controlled layer thickness determined by the number of ALD or ALE cycles performed.
      The ALD and ALE techniques are common in the semiconductor industry where they are used to fabricate high-performance transistors. Their use as an optical coating method is less common, particularly at ultraviolet wavelengths where the choice of optical coating material is largely restricted to metal fluorides instead of more common metal oxides, due to the larger optical band energy of fluoride materials, which minimizes absorption losses in the coatings. Using an approach based on co-reaction with hydrogen fluoride, the team at JPL has developed a variety of fluoride-based ALD and ALE processes.
      (left) The Supernova remnants and Proxies for ReIonization Testbed Experiment (SPRITE) CubeSat primary mirror inside the ALD coating facility at JPL, the mirror is 18 cm on the long and is the largest optic coated in this chamber to-date. (right) Flight optic coating inside JPL ALD chamber for Pioneers Aspera Mission. Like SPRITE, the Aspera coating combines a lithium fluoride process developed at NASA GSFC with thin ALD encapsulation of magnesium fluoride at JPL. Image Credit: NASA-JPL In addition to these metal-fluoride materials, layers of aluminum are often used to construct structures like reflective mirrors and bandpass filters for instruments operating in the UV.  Although aluminum has high intrinsic UV reflectance, it also readily forms a surface oxide that strongly absorbs UV light. The role of the metal fluoride coating is then to protect the aluminum surface from oxidation while maintaining enough transparency to create a mirror with high reflectance.
      The use of ALD in this context has initially been pursued in the development of telescope optics for two SmallSat astrophysics missions that will operate in the UV: the Supernova remnants and Proxies for ReIonization Testbed Experiment (SPRITE) CubeSat mission led by Brian Fleming at the University of Colorado Boulder, and the Aspera mission led by Carlos Vargas at the University of Arizona. The mirrors for SPRITE and Aspera have reflective coatings that utilize aluminum protected by lithium fluoride using a novel PVD processes developed at NASA Goddard Space Flight Center, and an additional very thin top coating of magnesium fluoride deposited via ALD.
      Team member John Hennessy prepares to load a sample wafer in the ALD coating chamber at JPL. Image Credit: NASA JPL The use of lithium fluoride enables SPRITE and Aspera to “see” further into the UV than other missions like NASA’s Hubble Space Telescope, which uses only magnesium fluoride to protect its aluminum mirror surfaces. However, a drawback of lithium fluoride is its sensitivity to moisture, which in some cases can cause the performance of these mirror coatings to degrade on the ground prior to launch. To circumvent this issue, very thin layers (~1.5 nanometers) of magnesium fluoride were deposited by ALD on top of the lithium fluoride on the SPRITE and Aspera mirrors. The magnesium fluoride layers are thin enough to not strongly impact the performance of the mirror at the shortest wavelengths, but thick enough to enhance the stability against humidity during ground phases of the missions. Similar approaches are being considered for the mirror coatings of the future NASA flagship Habitable Worlds Observatory (HWO).
      Multilayer structures of aluminum and metal fluorides can also function as bandpass filters (filters that allow only signals within a selected range of wavelengths to pass through to be recorded) in the UV. Here, ALD is an attractive option due to the inherent repeatability and precise thickness control of the process. There is currently no suitable ALD process to deposit aluminum, and so additional work by the JPL team has explored the development of a custom vacuum coating chamber that combines the PVD aluminum and ALD fluoride processes described above. This system has been used to develop UV bandpass filters that can be deposited directly onto imaging sensors like silicon (Si) CCDs. These coatings can enable such sensors to operate with high UV efficiency, but low sensitivity to longer wavelength visible photons that would otherwise add background noise to the UV observations.
      Structures composed of multilayer aluminum and metal fluoride coatings have recently been delivered as part of a UV camera to the Star-Planet Activity Research CubeSat (SPARCS) mission led by Evgenya Shkolnik at Arizona State University. The JPL-developed camera incorporates a delta-doped Si CCD with the ALD/PVD filter coating on the far ultraviolet channel, yielding a sensor with high efficiency in a band centered near 160 nm with low response to out-of-band light.
      A prototype of a back-illuminated CCD incorporating a multi-layer metal-dielectric bandpass filter coating deposited by a combination of thermal evaporation and ALD. This coating combined with JPL back surface passivation approaches enable the Si CCD to operate with high UV efficiency while rejecting longer wavelength light. Image credit: NASA JPL Next, the JPL team that developed these coating processes plans to focus on implementing a similar bandpass filter on an array of larger-format Si Complementary Metal-Oxide-Semiconductor (CMOS) sensors for the recently selected NASA Medium-Class Explorer (MIDEX) UltraViolet EXplorer (UVEX) mission led by Fiona Harrison at the California Institute of Technology, which is targeted to launch in the early 2030s. 
      For additional details, see the entry for this project on NASA TechPort
      Project Lead: Dr. John Hennessy, Jet Propulsion Laboratory (JPL)
      Share








      Details
      Last Updated Mar 18, 2025 Related Terms
      Technology Highlights Astrophysics Astrophysics Division Jet Propulsion Laboratory Science-enabling Technology Explore More
      5 min read NASA’s Webb Images Young, Giant Exoplanets, Detects Carbon Dioxide


      Article


      1 day ago
      2 min read Hubble Sees a Spiral and a Star


      Article


      4 days ago
      4 min read Discovery Alert: ‘Super-Earth’ Swings from Super-Heated to Super-Chill


      Article


      7 days ago
      View the full article
    • By NASA
      Students, mentors, and team supporters donning team colors watch robots clash on the playing field at the FIRST Robotics Los Angeles regional competition in El Segundo on March 16. NASA/JPL-Caltech Robots built by high schoolers vied for points in a fast-moving game inspired by complex ocean ecosystems at the FIRST Robotics Los Angeles regional competition.
      High school students who spent weeks designing, assembling, and testing 125-pound rolling robots put their fast-moving creations into the ring over the weekend, facing off at the annual Los Angeles regional FIRST Robotics Competition, an event supported by NASA’s Jet Propulsion Laboratory in Southern California.
      Four of the 43 participating teams earned a chance to compete in April at the FIRST international championship tournament in Houston, which draws winning teams from across the country.
      Held March 14 to 16 at the Da Vinci Schools campus in El Segundo, the event is one of many supported by the nonprofit FIRST (For Inspiration and Recognition of Science and Technology), which pairs students with STEM professionals. Teams receive the game rules, which change every year, in January and sprint toward competition, assembling their robot based on FIRST’s specifications. The global competition not only gives students engineering experience but also helps them develop business skills with a range of activities, from fundraising for their team to marketing.
      For this year’s game, called “Reefscape,” two alliances of three teams competed for points during each 2½-minute match. That meant six robots at a time sped across the floor, knocking into each other and angling to seed “coral” (pieces of PVC pipe) on “reefs” and harvesting “algae” (rubber balls). In the final seconds of each round, teams could earn extra points if their robots were able to hoist themselves into the air and dangle from hanging cages, as though they were ascending to the ocean surface.
      The action was set to a bouncy soundtrack that reverberated through the gym, while in the bleachers there were choreographed dancing, loud cheers, pom-poms, and even some tears.
      The winning alliance was composed of Warbots from Downey’s Warren High School, TorBots from Torrance’s South High School, and West Torrance Robotics from Torrance’s West High School. The Robo-Nerds of Benjamin Franklin High in Los Angeles’ Highland Park and Robo’Lyon from Notre Dame de Bellegarde outside Lyon, France, won awards that mean they’ll also get to compete in Houston, alongside the Warbots and the TorBots.
      NASA and its Robotics Alliance Project provide grants for high school teams across the country and support FIRST Robotics competitions to encourage students to pursue STEM careers in aerospace. For the L.A. regional competition, JPL has coordinated volunteers — and provided coaching and mentoring to teams, judges, and other competition support — for 25 years.
      For more information about the FIRST Los Angeles regional, visit:
      https://cafirst.org/frc/losangeles/
      News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2025-037
      Share
      Details
      Last Updated Mar 17, 2025 Related Terms
      Jet Propulsion Laboratory Explore More
      3 min read NASA Analysis Shows Unexpected Amount of Sea Level Rise in 2024
      Article 4 days ago 6 min read Cosmic Mapmaker: NASA’s SPHEREx Space Telescope Ready to Launch
      Article 1 week ago 5 min read NASA Turns Off 2 Voyager Science Instruments to Extend Mission
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read NASA’s Webb Peers Deeper into Mysterious Flame Nebula
      This collage of images from the Flame Nebula shows a near-infrared light view from NASA’s Hubble Space Telescope on the left, while the two insets at the right show the near-infrared view taken by NASA’s James Webb Space Telescope. Credits:
      NASA, ESA, CSA, M. Meyer (University of Michigan), A. Pagan (STScI) The Flame Nebula, located about 1,400 light-years away from Earth, is a hotbed of star formation less than 1 million years old. Within the Flame Nebula, there are objects so small that their cores will never be able to fuse hydrogen like full-fledged stars—brown dwarfs.
      Brown dwarfs, often called “failed stars,” over time become very dim and much cooler than stars. These factors make observing brown dwarfs with most telescopes difficult, if not impossible, even at cosmically short distances from the Sun. When they are very young, however, they are still relatively warmer and brighter and therefore easier to observe despite the obscuring, dense dust and gas that comprises the Flame Nebula in this case.
      NASA’s James Webb Space Telescope can pierce this dense, dusty region and see the faint infrared glow from young brown dwarfs. A team of astronomers used this capability to explore the lowest mass limit of brown dwarfs within the Flame Nebula. The result, they found, were free-floating objects roughly two to three times the mass of Jupiter, although they were sensitive down to 0.5 times the mass of Jupiter.
      “The goal of this project was to explore the fundamental low-mass limit of the star and brown dwarf formation process. With Webb, we’re able to probe the faintest and lowest mass objects,” said lead study author Matthew De Furio of the University of Texas at Austin.
      Image A: Flame Nebula: Hubble and Webb Observations
      This collage of images from the Flame Nebula shows a near-infrared light view from NASA’s Hubble Space Telescope on the left, while the two insets at the right show the near-infrared view taken by NASA’s James Webb Space Telescope. Much of the dark, dense gas and dust, as well as the surrounding white clouds within the Hubble image, have been cleared in the Webb images, giving us a view into a more translucent cloud pierced by the infrared-producing objects within that are young stars and brown dwarfs. Astronomers used Webb to take a census of the lowest-mass objects within this star-forming region.
      The Hubble image on the left represents light at wavelengths of 1.05 microns (filter F105W) as blue, 1.3 microns (F130N) as green, and 1.39 microns (F129M) as red. The two Webb images on the right represent light at wavelengths of 1.15 microns and 1.4 microns (filters F115W and F140M) as blue, 1.82 microns (F182M) as green, 3.6 microns (F360M) as orange, and 4.3 microns (F430M) as red. NASA, ESA, CSA, M. Meyer (University of Michigan), A. Pagan (STScI) Smaller Fragments
      The low-mass limit the team sought is set by a process called fragmentation. In this process large molecular clouds, from which both stars and brown dwarfs are born, break apart into smaller and smaller units, or fragments.
      Fragmentation is highly dependent on several factors with the balance between temperature, thermal pressure, and gravity being among the most important. More specifically, as fragments contract under the force of gravity, their cores heat up. If a core is massive enough, it will begin to fuse hydrogen. The outward pressure created by that fusion counteracts gravity, stopping collapse and stabilizing the object (then known as a star). However, fragments whose cores are not compact and hot enough to burn hydrogen continue to contract as long as they radiate away their internal heat.
      “The cooling of these clouds is important because if you have enough internal energy, it will fight that gravity,” says Michael Meyer of the University of Michigan. “If the clouds cool efficiently, they collapse and break apart.”
      Fragmentation stops when a fragment becomes opaque enough to reabsorb its own radiation, thereby stopping the cooling and preventing further collapse. Theories placed the lower limit of these fragments anywhere between one and ten Jupiter masses. This study significantly shrinks that range as Webb’s census counted up fragments of different masses within the nebula.
      “As found in many previous studies, as you go to lower masses, you actually get more objects up to about ten times the mass of Jupiter. In our study with the James Webb Space Telescope, we are sensitive down to 0.5 times the mass of Jupiter, and we are finding significantly fewer and fewer things as you go below ten times the mass of Jupiter,” De Furio explained. “We find fewer five-Jupiter-mass objects than ten-Jupiter-mass objects, and we find way fewer three-Jupiter-mass objects than five-Jupiter-mass objects. We don’t really find any objects below two or three Jupiter masses, and we expect to see them if they are there, so we are hypothesizing that this could be the limit itself.”
      Meyer added, “Webb, for the first time, has been able to probe up to and beyond that limit. If that limit is real, there really shouldn’t be any one-Jupiter-mass objects free-floating out in our Milky Way galaxy, unless they were formed as planets and then ejected out of a planetary system.”
      Image B: Low Mass Objects within the Flame Nebula in Infrared Light
      This near-infrared image of a portion of the Flame Nebula from NASA’s James Webb Space Telescope highlights three low-mass objects, seen in the insets to the right. These objects, which are much colder than protostars, require the sensitivity of Webb’s instruments to detect them. These objects were studied as part of an effort to explore the lowest mass limit of brown dwarfs within the Flame Nebula.
      The Webb images represent light at wavelengths of 1.15 microns and 1.4 microns (filters F115W and F140M) as blue, 1.82 microns (F182M) as green, 3.6 microns (F360M) as orange, and 4.3 microns (F430M) as red. NASA, ESA, CSA, STScI, M. Meyer (University of Michigan) Building on Hubble’s Legacy
      Brown dwarfs, given the difficulty of finding them, have a wealth of information to provide, particularly in star formation and planetary research given their similarities to both stars and planets. NASA’s Hubble Space Telescope has been on the hunt for these brown dwarfs for decades.
      Even though Hubble can’t observe the brown dwarfs in the Flame Nebula to as low a mass as Webb can, it was crucial in identifying candidates for further study. This study is an example of how Webb took the baton—decades of Hubble data from the Orion Molecular Cloud Complex—and enabled in-depth research.
      “It’s really difficult to do this work, looking at brown dwarfs down to even ten Jupiter masses, from the ground, especially in regions like this. And having existing Hubble data over the last 30 years or so allowed us to know that this is a really useful star-forming region to target. We needed to have Webb to be able to study this particular science topic,” said De Furio.
      “It’s a quantum leap in our capabilities between understanding what was going on from Hubble. Webb is really opening an entirely new realm of possibilities, understanding these objects,” explained astronomer Massimo Robberto of the Space Telescope Science Institute.
      This team is continuing to study the Flame Nebula, using Webb’s spectroscopic tools to further characterize the different objects within its dusty cocoon. 
      “There’s a big overlap between the things that could be planets and the things that are very, very low mass brown dwarfs,” Meyer stated. “And that’s our job in the next five years: to figure out which is which and why.”
      These results are accepted for publication in The Astrophysical Journal Letters.
      Image C (Animated): Flame Nebula (Hubble and Webb Comparison)
      This animated image alternates between a Hubble Space Telescope and a James Webb Space Telescope observation of the Flame Nebula, a nearby star-forming nebula less than 1 million years old. In this comparison, three low-mass objects are highlighted. In Hubble’s observation, the low-mass objects are hidden by the region’s dense dust and gas. However, the objects are brought out in the Webb observation due to Webb’s sensitivity to faint infrared light. NASA, ESA, CSA, Alyssa Pagan (STScI) The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Matthew Brown – mabrown@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Learn more about brown dwarf discoveries
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Universe



      Universe Stories



      Stars Stories


      Share








      Details
      Last Updated Mar 10, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Brown Dwarfs Goddard Space Flight Center Science & Research Star-forming Nebulae The Universe View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 4 min read
      Sols 4466-4468: Heading Into the Small Canyon
      NASA’s Mars rover Curiosity produced this image from its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm. This image is a combination of two MAHLI images, merged on the rover on Feb. 25, 2025 — sol 4464, or Martian day 4,464 of the Mars Science Laboratory mission — at 22:36:53 UTC. NASA/JPL-Caltech/MSSS Written by Susanne Schwenzer, Planetary Geologist at The Open University
      Earth planning date: Wednesday, Feb. 26, 2025
      The fine detail of the image above reminds us once again that geoscience — on Mars and on Earth — is an observational science. If you look at the image for a few moments, you will see that there are different areas made of different textures. You will also observe that some features appear to be more resistant to weathering than others, and as a consequence stand out from the surface or the rims of the block. Sedimentologists will study this and many other images in fine detail and compare them to similar images we have acquired along the most recent drive path. From that they put together a reconstruction of the environment billions of years in the past: Was it water or wind that laid down those rocks, and what happened next? Many of the knobbly textures might be from water-rock interaction that happened after the initial deposition of the material. We will see; the jury is out on what these details tell us, and we are looking closely at all those beautiful images and then will turn to the chemistry data to understand even more about those rocks.
      In the caption of the image above it says “merged” images. This is an imaging process that happens aboard the rover — it takes two (or more) images of the same location on the same target, acquired at different focus positions, and merges them so a wider range of the rock is in focus. This is especially valuable on textures that have a high relief, such as the above shown example. The rover is quite clever, isn’t it?
      In today’s plan MAHLI does not have such an elaborate task, but instead it is documenting the rock that the APXS instrument is measuring. The team decided that it is time for APXS to measure the regular bedrock again, because we are driving out of an area that is darker on the orbital image and into a lighter area. If you want, you can follow our progress on that orbital image. (But I am sure many of the regular readers of this blog know that!)
      That bedrock target was named “Trippet Ranch.” ChemCam investigates the target “San Ysidro Trail,” which is a grayish-looking vein. As someone interested in water-rock interactions for my research, I always love plans that have the surrounding rock (the APXS target in this case) and the alteration features in the same location. This allows us to tease out which of the chemical components of the rock might have moved upon contact with water, and which ones have not.
      As we are driving through very interesting terrain, with walls exposed on the mesas — especially Gould mesa — and lots of textures in the blocks around us, there are many Mastcam mosaics in today’s plan! The mosaics on “Lytle Creek,” “Round Valley,” “Heaton Flat,” “Los Liones,” and the single image on “Mount Pinos” all document this variety of structures, and another mosaic looks right at our workspace. It did not get a nice name as it is part of a series with a more descriptive name all called “trough.” We often do this to keep things together in logical order when it comes to imaging series. The long-distance RMIs in today’s plan are another example of this, as they are just called “Gould,” followed by the sol number they will be taken on — that’s 4466 — and a and b to distinguish the two from each other. Gould Mesa, the target of both of them, exposes many different structures and textures, and looking at such walls — geologists call them outcrops — lets us read the rock record like a history book! And it will get even better in the next few weeks as we are heading into a small canyon and will have walls on both sides. Lots of science to come in the next few downlinks, and lots of science on the ground already! I’d better get back to thinking about some of the data we have received recently, while the rover is busy exploring the ever-changing geology and mineralogy on the flanks of Mount Sharp.
      Share








      Details
      Last Updated Feb 26, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4464-4465: Making Good Progress


      Article


      5 hours ago
      3 min read Sols 4461-4463: Salty Salton Sea?


      Article


      1 day ago
      2 min read Gardens on Mars? No, Just Rocks!


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...