Jump to content

Phathom Donald Brings Space Closer as a Hubble Mission Engineer


Recommended Posts

  • Publishers
Posted
Phanthom Donald, a Black woman with long black dreadlocks and glasses, smiles and poses in the Hubble Space Telescope control room. She wears a burgundy polo and black pants and has a black tattooed band around her left forearm.
“I’m always proud every time I see a new picture taken by Hubble,u0022 said Phathom Donald, a satellite systems engineer for the Hubble Space Telescope. u0022It feels like an accomplishment and an honor even to be part of a mission that brings those images to people on Earth.”
u003cstrongu003eu003cemu003eCredits: NASA’s Goddard Space Flight Center / Rob Andreoliu003c/emu003eu003c/strongu003e

Name: Phathom Donald

Title: Mission Engineer

Formal Job Classification: Satellite Systems Engineer

Organization: Astrophysics Project Division, Hubble Space Telescope Operations Project, Code 441

What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?

As a member of the flight operations team for the Hubble Space Telescope, I monitor and evaluate the performance of Hubble’s subsystems through its telemetry. I send commands to Hubble as needed for routine maintenance, maintaining communication with the spacecraft, and recovery from onboard anomalies. I also support ground system maintenance to ensure that operations run smoothly and uninterrupted.

On the flight software team, I build and run simulations to verify flight software changes before they’re installed onto Hubble. Just like how your laptop or your smartphone gets regular updates to add new features or to fix bugs, Hubble gets flight software updates for added capabilities and to address new issues.

Being a flight controller was a dream of mine, so being able to command a spacecraft has been really exciting. I also really enjoy coding, and it’s been interesting seeing how all these critical and complicated activities happen at the same time. I think the work I do outside of my flight controller role has helped me become a better flight controller, because I have a better idea of what’s happening behind the scenes — things feel a bit more intuitive to me.

How did you find your path to Goddard?

During undergrad, I was on a path to become a power systems engineer. But one day in my senior design class, our professor invited the Transiting Exoplanet Survey Satellite (TESS) project manager at the time to speak to our class about systems engineering and its applications to the mission. Within five minutes of this presentation, I was on the verge of tears. This presentation alone changed the course of my career because it reminded me that I love the stars and I love space. More importantly, it made me feel like a career at NASA was actually possible.

So, I emailed the speaker and asked him for advice, and he responded with excellent guidance and encouragement. I saved that email and essentially used it as a career guide. After graduating, I worked for a NASA contractor first as a quality engineer, then as a model-based systems engineer. While I was in that role, I pursued my master’s, and about a month after graduating, I saw the job posting for Hubble’s flight operations team at Goddard. After a year or so of settling in, I reached out to that same speaker and I let him know I took his advice, I made it to NASA, and that I couldn’t be more grateful for his help. He responded beautifully, saying that he was humbled to have played any role in me getting to where I wanted to be.

What first sparked your interest in space?

My dad used to take my brothers and me to the Griffith Observatory in Los Angeles all the time. I loved going to those shows in the planetarium and just feeling engrossed in what they were teaching. I’d always wanted to take an astronomy class, but I didn’t get the chance until my last year of undergrad. I’m so glad I did; it just reaffirmed that space is for me.

Hubble mission engineer Phanthom Donald, a Black woman with long black dreadlocks in a large bun on the back of her head, gestures and speaks to a fellow engineer sitting in front of several large computer monitors.
u0022In moments where Hubble’s mission is at risk, I’ll look at the situation and think, ‘Okay, what can we do to either fix or mitigate this problem?’u0022 said Phathom Donald, a satellite systems engineer for the Hubble Space Telescope. u0022I do what I can with care, I communicate clearly with those I’m working with, and I trust the abilities of my colleagues.”
u003cstrongu003eu003cemu003eCredits: NASA’s Goddard Space Flight Center / Rebecca Rothu003c/emu003eu003c/strongu003e

What is your educational background?

I graduated from Howard University in Washington, D.C., in 2014 with a bachelor’s in electrical engineering. I also have a master’s in space systems engineering from Stevens Institute of Technology in Hoboken, New Jersey. Right now, I’m pursuing a graduate certificate in control systems from the University of Michigan at Dearborn to prepare for a role supporting Hubble’s pointing and control subsystems. After I’m done, I plan to pursue a graduate certificate in aerospace for that same reason; I want to pick up and hone skills in order to maximize my contributions to Hubble.

How do you keep a cool head when you have a mission-critical situation?

I think I’m generally a pretty calm person, but in moments where Hubble’s mission is at risk, I tend to focus on what is in my power to get done. So I’ll look at the situation and think, “OK, what can we do to either fix or mitigate this problem?” And I do what I can with care, I communicate clearly with those I’m working with, and I trust the abilities of my colleagues. I work with really brilliant, dedicated people who love what they do, so I know that they’re going to do what’s best for the mission.

What is your proudest accomplishment at Goddard?

To be honest, I’m always proud every time I see a new picture taken by Hubble, especially after we’ve recovered it from an anomaly. It feels like an accomplishment and an honor even to be part of a mission that brings those images to people on Earth.

Who are your science role models, and how have they shaped your career in science?

Katherine Johnson: she was an African American mathematician who was pivotal in the success of the early human spaceflight missions carried out by NASA. Her complex trajectory calculations got the first man into space and back unharmed. I also admire Dr. Sian Proctor: she was the first Black woman to pilot a spacecraft.

As a minority, it can be easy to feel like an outlier in the space industry. Seeing people like Katherine and Dr. Proctor succeed and excel in these fields adds a bit of comfort. They show me that these technically demanding roles are attainable.

How do you like to spend your time outside of work? What are your hobbies?

I spend a lot of time with my tiny dog, Chara. I named her after a yellow star in the Hunting Dogs constellation. Chara is Greek for “joy,” and to say she brings me joy would be an understatement.

I actually have a new obsession with snorkeling and freediving. I went snorkeling for the first time in early 2021 and it completely changed my life. Before snorkeling, I was terrified of water. After snorkeling, I wanted to be a fish. I just love the freedom that comes with the lack of equipment. I love the peace that I feel underwater.

What is your “six-word memoir”? A six-word memoir describes something in just six words.

“The stars are not too far.”

What is some advice you would give your 10-year-old self?

You are capable of more than you know, more than what people might try to make you believe. Do what makes you feel fulfilled and define your own success. Your passion is your strength.

By Hannah Richter
NASA’s Goddard Space Flight Center, Greenbelt, Md.

A graphic with a collection of people's portraits grouped together in front of a soft blue galaxy background. The people come from various races, ethnicities, and genders. A soft yellow star shines in the upper left corner, and the stylized text u0022Conversations with Goddardu0022 is in white on the far right.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      The DARC partnership is completing construction at the first of three sites that will host a global network of advanced ground-based sensors.

      View the full article
    • By NASA
      One semester as a NASA Pathways intern was enough to inspire Portia Keyes to sign up for a Russian language class at college. After interning in the Johnson Space Center’s Office of Procurement, Keyes hoped to someday use her new language skills in support of the International Space Station Program.

      Now, 12 years later, Keyes is the deputy manager of the procurement office for the International Space Station and Commercial Low Earth Orbit Development Programs. That means she is responsible for implementing and overseeing acquisition solutions that enable the purchasing of goods and services in support of both programs.

      Official NASA portrait of Portia Keyes.NASA It has also given her a chance to use some of what she learned from her Russian language course. One of Keyes’ favorite NASA projects involved negotiating a contract modification with Roscosmos to secure transportation of NASA astronauts to the International Space Station via Soyuz spacecraft following the space shuttle’s retirement. “This project stands out to me both for its impact on NASA’s missions and the way it transcended political and geographical boundaries,” Keyes said. Being a part of this effort reinforced the importance of collaboration on a global scale. “It demonstrated how shared goals and values can unite people across different nations, regardless of external circumstances,” she said. “The world is more connected than we often realize.”

      Keyes values collaboration on a smaller scale, as well, noting that her procurement role involves working with a wide variety of subject matter experts who are passionate about their respective fields. She acknowledged that procurement staff are sometimes seen as obstructing or slowing a mission rather than enabling it, although she has overcome this challenge through effective communication with stakeholders – striving to understand their perspectives and present mutually beneficial solutions.

      “My commitment is to advancing NASA’s missions through the responsible management of taxpayer dollars,” she said. “Collaborating closely with my technical counterparts, I have been able to secure mission-critical services and supplies, all while adhering to regulatory, schedule, and resource constraints.”

      Keyes poses for a picture outside of NASA Headquarters in Washington, D.C. Image courtesy of Portia Keyes Adaptability has also been important to Keyes’ success. “Whether it’s shifting priorities due to unforeseen challenges, navigating cultural differences within international teams, or adjusting to new acquisition regulations, being flexible and open to change has allowed me to not just survive in dynamic environments, but thrive,” she said.

      At the same time, Keyes strives to maintain balance in the workplace. “What I have learned about myself is that I can do anything, but not everything,” she said. “Maturing in my career has meant accepting that I have limited time, energy, and resources, so it is important to discern what truly matters and focus my efforts there.”

      Portia Keyes, fourth from left, received a JSC Director’s Commendation Award in June 2024 for significant contributions to Johnson’s Office of Procurement. From left are Johnson Associate Director for Vision and Strategy Douglas Terrier, Office of Procurement Director Brad Niese, Office of Procurement Functional Lead Candice Palacios-Hoang, Keyes, and Johnson Director Vanessa Wyche.NASA Keyes’ hard work has been recognized with several awards throughout her career. She is proudest of earning the Office of Procurement Bubbee’s Coach Award, which is given to the team member most likely to serve as a mentor to colleagues. “Much of my professional and personal growth has stemmed from formal and informal mentors who supported me in navigating challenges, developing new skills, and creating environments for me to thrive,” she said. “I have a great appreciation for those mentors, and I strive to impact those around me similarly.”

      Keyes hopes to encourage the Artemis Generation to approach the future – and periods of uncertainty – with curiosity, resilience, and a responsibility to care for our planet and the universe. She looks forward to the continued expansion of access to space.

      “I hope to be around for the days where I can afford a reasonably priced, roundtrip ticket to the Moon,” she said. “Perhaps by then they will sell functional spacesuits in the local sporting goods stores.”
      View the full article
    • By Space Force
      The U.S. Space Force announced the winners of the third annual Polaris Awards, recognizing individuals and teams who embody the four Guardian Values: Character, Connection, Commitment, and Courage.
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Astronaut Jeanette Epps extracts DNA samples from bacteria colonies for genomic analysis aboard the International Space Station’s Harmony module.NASA In an effort to learn more about astronaut health and the effects of space on the human body, NASA is conducting a new experiment aboard the International Space Station to speed up the detection of antibiotic-resistant bacteria, thus improving the health safety not only of astronauts but patients back on Earth.
      Infections caused by antibiotic-resistant bacteria can be difficult or impossible to treat, making antibiotic resistance a leading cause of death worldwide and a global health concern.
      Future astronauts visiting the Moon or Mars will need to rely on a pre-determined supply of antibiotics in case of illness. Ensuring those antibiotics remain effective is an important safety measure for future missions.
      The Genomic Enumeration of Antibiotic Resistance in Space (GEARS) experiment, which is managed by NASA’s Ames Research Center in California’s Silicon Valley, involves astronauts swabbing interior surfaces across the space station and testing those samples for evidence of antibiotic-resistant bacteria, and in particular Enterococcus faecalis, a type of bacteria commonly found in the human body. The experiment is the first step in a series of work that seeks to better understand how organisms grow in a space environment, and how those similarities and differences might help improve research back on Earth.
      “Enterococcus is a type of organism that’s been with us since our ancestors crawled out of the ocean, and is a core member of the human gut,” said Christopher Carr, assistant professor at the Georgia Institute of Technology and co-principal investigator of GEARS. “It’s able to survive inside and outside of its host, which has allowed it to become the second highest leading cause of hospital-acquired infections. We want to understand how this type of organism is adapting to the space environment.”
      The GEARS experiment seeks to improve the detection and identification of these bacteria, building on existing efforts to understand what organisms grow on the station’s surfaces.
      “We’ve been monitoring the surfaces of the space station since 2000, but this experiment will give us insight beyond the identities of present organisms, which is currently all that is used for risk assessment,” said Sarah Wallace, a microbiologist at NASA’s Johnson Space Center in Houston and co-principal investigator of GEARS. “With the station orbiting close to Earth, it’s a low-risk space to evaluate and learn more about the frequency of this bacteria and how it responds to the space environment so we can apply this understanding to missions to the Moon and Mars, where resupplies are more complex.”
      Over the next year, astronauts will swab parts of the station and analyze samples by adding an antibiotic to the medium in which the samples will grow. The results will reveal where this and other resistant bacteria are growing and whether they can persist or spread across the station.
      I hope we can shine a light on rapidly analyzing bacteria: if we can do this in space, we can do it on Earth, too.
      Sarah WAllace
      NASA Microbiologist
      The experiment was originally launched to the ISS on the 30th SpaceX commercial resupply services (CRS) mission in March 2024, and the first round of GEARS testing turned up surprising results: very few resistant bacteria colonies, none of which were E. faecalis. This bodes well for the threat of antibiotic resistance in space.
      “There was some cleaning done before swabbing the station, which may have removed some bacteria,” said Carr. To better understand how and where risky bacteria may live, the astronauts paused some cleaning before the second round of swabbing.
      “We want the astronauts to have a clean environment, but we also want to test those high-touch areas, so they intentionally and briefly avoided cleaning some areas so we can understand how bacteria may grow or spread on the station.”
      This experiment is the first study to perform metagenomic sequencing in space, a method that analyzes all the genetic material in a sample to identify and characterize all organisms that are present, an important research and medical diagnostic capability for future deep space missions.
      The GEARS team hopes to create a rapid workflow to analyze bacteria samples, reducing the time between swabbing and test results from days to hours. That workflow could be applied in hospitals and make a huge impact when treating hospital-acquired infections from antibiotic-resistant microbes.
      The result could save lives – more than 35,000 people die each year as a result of antibiotic-resistant infections. The issue is personal to Wallace, who lost a family member to a hospital-acquired infection.
      “It’s not that uncommon: so many people have experienced this kind of loss,” said Wallace. “A method to give an answer in a matter of hours is huge and profound. It’s my job to keep the crew healthy, but we’re also passionate about bringing that work back down to Earth. I hope we can shine a light on rapidly analyzing bacteria: if we can do this in space, we can do it on Earth, too.”
      Genomic Enumeration of Antibiotic Resistance in Space (GEARS) was funded by the Biological and Physical Sciences Space Biology Program, with pioneering funding and support from the Mars Campaign office.
      Share
      Details
      Last Updated Feb 19, 2025 Related Terms
      International Space Station (ISS) Ames Research Center Biological & Physical Sciences Explore More
      2 min read 2024 Annual Highlights of Results from the International Space Station Science
      Article 1 day ago 2 min read Station Science Top News: Feb. 14, 2025
      Article 1 day ago 5 min read NASA Tests Drones to Provide Micrometeorology, Aid in Fire Response
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Official crew portrait for NASA’s SpaceX Crew-10 mission with NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov.Credit: NASA NASA and its partners will discuss the upcoming Expedition 73 mission aboard the International Space Station during a pair of news conferences on Monday, Feb. 24, from the agency’s Johnson Space Center in Houston.
      Mission leadership will participate in an overview news conference at 2 p.m. EST live on NASA+, covering preparations for NASA’s SpaceX Crew-10 launch in March and the agency’s crew member rotation launch on Soyuz in April. Learn how to watch NASA content through a variety of platforms, including social media.
      NASA also will host a crew news conference at 4 p.m. and provide coverage on NASA+, followed by individual crew member interviews beginning at 5 p.m. This is the final media opportunity with Crew-10 before the crew members travel to NASA’s Kennedy Space Center in Florida for launch.
      The Crew-10 mission, targeted to launch Wednesday, March 12, will carry NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov to the orbiting laboratory.
      NASA astronaut Jonny Kim, scheduled to launch to the space station on the Soyuz MS-27 spacecraft no earlier than April 8, also will participate in the crew briefing and interviews. Kim will be available again on Tuesday, March 18, for limited virtual interviews prior to launch. NASA will provide additional details on that opportunity when available.
      For the Crew-10 mission, a SpaceX Falcon 9 rocket and Dragon spacecraft will launch from Launch Complex 39A at NASA Kennedy. The three-person crew of Soyuz MS-27, including Kim and Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky, will launch from the Baikonur Cosmodrome in Kazakhstan.
      United States-based media seeking to attend in person must contact the NASA Johnson newsroom no later than 5 p.m. on Friday, Feb. 21, at 281-483-5111 or at jsccommu@mail.nasa.gov. U.S. and international media interested in participating by phone must contact NASA Johnson by 9:45 a.m. the day of the event.
      U.S. and international media seeking remote interviews with the crew must submit requests to the NASA Johnson newsroom by 5 p.m. on Feb. 21. A copy of NASA’s media accreditation policy is available online.
      Briefing participants include (all times Eastern and subject to change based on real-time operations):
      2 p.m.: Expedition 73 Overview News Conference
      Ken Bowersox, associate administrator, Space Operations Mission Directorate at NASA Headquarters in Washington Steve Stich, manager, NASA’s Commercial Crew Program, NASA Kennedy Bill Spetch, operations integration manager, NASA’s International Space Station Program, NASA Johnson William Gerstenmaier, vice president, Build & Flight Reliability, SpaceX Mayumi Matsuura, vice president and director general, Human Spaceflight Technology Directorate, JAXA 4 p.m.: Expedition 73 Crew News Conference
      Jonny Kim, Soyuz MS-27 flight engineer, NASA Anne McClain, Crew-10 spacecraft commander, NASA Nichole Ayers, Crew-10 pilot, NASA Takuya Onishi, Crew-10 mission specialist, JAXA Kirill Peskov, Crew-10 mission specialist, Roscosmos 5 p.m.: Crew Individual Interview Opportunities
      Crew-10 members and Kim available for a limited number of interviews Official portrait of NASA astronaut Jonny Kim, who will serve as a flight engineer during Expedition 73.Credit: NASA Kim is making his first spaceflight after selection as part of the 2017 NASA astronaut class. A native of Los Angeles, Kim is a U.S. Navy lieutenant commander and dual designated naval aviator and flight surgeon. Kim also served as an enlisted Navy SEAL. He holds a bachelor’s degree in Mathematics from the University of San Diego and a medical degree from Harvard Medical School in Boston. He completed his internship with the Harvard Affiliated Emergency Medicine Residency at Massachusetts General Hospital and Brigham and Women’s Hospital. After completing the initial astronaut candidate training, Kim supported mission and crew operations in various roles, including the Expedition 65 lead operations officer, T-38 operations liaison, and space station capcom chief engineer. Follow @jonnykimusa on X and @jonnykimusa on Instagram.
      Selected by NASA as an astronaut in 2013, this will be McClain’s second spaceflight. A colonel in the U.S. Army, she earned her bachelor’s degree in Mechanical Engineering from the U.S. Military Academy at West Point, New York, and holds master’s degrees in Aerospace Engineering, International Security, and Strategic Studies. The Spokane, Washington, native was an instructor pilot in the OH-58D Kiowa Warrior helicopter and is a graduate of the U.S. Naval Test Pilot School in Patuxent River, Maryland. McClain has more than 2,300 flight hours in 24 rotary and fixed-wing aircraft, including more than 800 in combat, and was a member of the U.S. Women’s National Rugby Team. On her first spaceflight, McClain spent 204 days as a flight engineer during Expeditions 58 and 59, and completed two spacewalks, totaling 13 hours and 8 minutes. Since then, she has served in various roles, including branch chief and space station assistant to the chief of NASA’s Astronaut Office. Follow @astroannimal on X and @astro_annimal on Instagram.
      The Crew-10 mission will be the first spaceflight for Ayers, who was selected as a NASA astronaut in 2021. Ayers is a major in the U.S. Air Force and the first member of NASA’s 2021 astronaut class named to a crew. The Colorado native graduated from the Air Force Academy in Colorado Springs with a bachelor’s degree in Mathematics and a minor in Russian, where she was a member of the academy’s varsity volleyball team. She later earned a master’s in Computational and Applied Mathematics from Rice University in Houston. Ayers served as an instructor pilot and mission commander in the T-38 ADAIR and F-22 Raptor, leading multinational and multiservice missions worldwide. She has more than 1,400 total flight hours, including more than 200 in combat. Follow @astro_ayers on X and @astro_ayers on Instagram.
      With 113 days in space, this mission also will mark Onishi’s second trip to the space station. After being selected as an astronaut by JAXA in 2009, he flew as a flight engineer for Expeditions 48 and 49, becoming the first Japanese astronaut to robotically capture the Cygnus spacecraft. He also constructed a new experimental environment aboard Kibo, the station’s Japanese experiment module. After his first spaceflight, Onishi became certified as a JAXA flight director, leading the team responsible for operating Kibo from JAXA Mission Control in Tsukuba, Japan. He holds a bachelor’s degree in Aeronautics and Astronautics from the University of Tokyo, and was a pilot for All Nippon Airways, flying more than 3,700 flight hours in the Boeing 767. Follow astro_onishi on X.
      The Crew-10 mission will also be Peskov’s first spaceflight. Before his selection as a cosmonaut in 2018, he earned a degree in Engineering from the Ulyanovsk Civil Aviation School and was a co-pilot on the Boeing 757 and 767 aircraft for airlines Nordwind and Ikar. Assigned as a test cosmonaut in 2020, he has additional experience in skydiving, zero-gravity training, scuba diving, and wilderness survival.
      Learn more about how NASA innovates for the benefit of humanity through NASA’s Commercial Crew Program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Kenna Pell / Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      kenna.m.pell@nasa.gov / sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Feb 18, 2025 LocationNASA Headquarters Related Terms
      Humans in Space Anne C. McClain Astronauts Commercial Crew International Space Station (ISS) ISS Research Johnson Space Center Jonny Kim Nichole Ayers View the full article
  • Check out these Videos

×
×
  • Create New...