Jump to content

NASA-Led Study Pinpoints Areas Sinking, Rising Along California Coast


Recommended Posts

  • Publishers
Posted

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

San Simeon
Cliffs slope into the ocean in San Simeon, California. All along the state’s dynamic coastline, land is inching down and up due to natural and human-caused factors. A bet-ter understanding of this motion can help communities prepare for rising seas.
NASA/JPL-Caltech

The elevation changes may seem small — amounting to fractions of inches per year — but they can increase or decrease local flood risk, wave exposure, and saltwater intrusion.

Tracking and predicting sea level rise involves more than measuring the height of our oceans: Land along coastlines also inches up and down in elevation. Using California as a case study, a NASA-led team has shown how seemingly modest vertical land motion could significantly impact local sea levels in coming decades.

By 2050, sea levels in California are expected to increase between 6 and 14.5 feet (15 and 37 centimeters) higher than year 2000 levels. Melting glaciers and ice sheets, as well as warming ocean water, are primarily driving the rise. As coastal communities develop adaptation strategies, they can also benefit from a better understanding of the land’s role, the team said. The findings are being used in updated guidance for the state.

“In many parts of the world, like the reclaimed ground beneath San Francisco, the land is moving down faster than the sea itself is going up,” said lead author Marin Govorcin, a remote sensing scientist at NASA’s Jet Propulsion Laboratory in Southern California. 

The new study illustrates how vertical land motion can be unpredictable in scale and speed; it results from both human-caused factors such as groundwater pumping and wastewater injection, as well as from natural ones like tectonic activity. The researchers showed how direct satellite observations can improve estimates of vertical land motion and relative sea level rise. Current models, which are based on tide gauge measurements, cannot cover every location and all the dynamic land motion at work within a given region.

Local Changes

Researchers from JPL and the National Oceanic and Atmospheric Administration (NOAA) used satellite radar to track more than a thousand miles of California coast rising and sinking in new detail. They pinpointed hot spots including cities, beaches, and aquifers at greater exposure to rising seas now and in coming decades.

To capture localized motion inch by inch from space, the team analyzed radar measurements made by ESA’s (the European Space Agency’s) Sentinel-1 satellites, as well as motion velocity data from ground-based receiving stations in the Global Navigation Satellite System. Researchers compared multiple observations of the same locations made between 2015 to 2023 using a processing technique called interferometric synthetic aperture radar (InSAR).

Scientists mapped land sinking in coastal California cities
Scientists mapped land sinking (indicated in blue) in coastal California cities and in parts of the Central Valley due to factors like soil compaction, erosion, and groundwater withdrawal. They also tracked uplift hot spots (shown in red), including in Long Beach, a site of oil and gas production.
NASA Earth Observatory

Homing in on the San Francisco Bay Area specifically, San Rafael, Corte Madera, Foster City, and Bay Farm Island the team found the land subsiding at a steady rate of more than 0.4 inches (10 millimeters) per year due largely to sediment compaction. Accounting for this subsidence in the lowest-lying parts of these areas, local sea levels could rise more than 17 inches (45 centimeters) by 2050. That’s more than double the regional estimate of 7.4 inches (19 centimeters) based solely on tide gauge projections.

Not all coastal locations in California are sinking. The researchers mapped uplift hot spots of several millimeters per year in the Santa Barbara groundwater basin, which has been steadily replenishing since 2018. They also observed uplift in Long Beach, where fluid extraction and injection occur with oil and gas production.

The scientists further calculated how human-induced drivers of local land motion increase uncertainties in the sea level projections by up to 15 inches (40 centimeters) in parts of Los Angeles and San Diego counties. Reliable projections in these areas are challenging because the unpredictable nature of human activities, such as hydrocarbon production and groundwater extraction, necessitating ongoing monitoring of land motion.  

Fluctuating Aquifers, Slow-Moving Landslides

In the middle of California, in the fast-sinking parts of the Central Valley (subsiding as much as 8 inches, or 20 centimeters, per year), land motion is influenced by groundwater withdrawal. Periods of drought and precipitation can alternately draw down or inflate underground aquifers. Such fluctuations were also observed over aquifers in Santa Clara in the San Francisco Bay Area, Santa Ana in Orange County, and Chula Vista in San Diego County.

Along rugged coastal terrain like the Big Sur mountains below San Francisco and Palos Verdes Peninsula in Los Angeles, the team pinpointed local zones of downward motion associated with slow-moving landslides. In Northern California they also found sinking trends at marshlands and lagoons around San Francisco and Monterey bays, and in Sonoma County’s Russian River estuary. Erosion in these areas likely played a key factor.

Scientists, decision-makers, and the public can monitor these and other changes occurring via the JPL-led OPERA (Observational Products for End-Users from Remote Sensing Analysis) project. The OPERA project details land surface elevational changes across North America, shedding light on dynamic processes including subsidence, tectonics, and landslides.

The OPERA project will leverage additional state-of-the-art InSAR data from the upcoming NISAR (NASA-Indian Space Research Organization Synthetic Aperture Radar) mission, expected to launch within the coming months.

News Media Contacts

Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov

Written by Sally Younger

2025-015

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Astronaut Jeanette Epps extracts DNA samples from bacteria colonies for genomic analysis aboard the International Space Station’s Harmony module.NASA In an effort to learn more about astronaut health and the effects of space on the human body, NASA is conducting a new experiment aboard the International Space Station to speed up the detection of antibiotic-resistant bacteria, thus improving the health safety not only of astronauts but patients back on Earth.
      Infections caused by antibiotic-resistant bacteria can be difficult or impossible to treat, making antibiotic resistance a leading cause of death worldwide and a global health concern.
      Future astronauts visiting the Moon or Mars will need to rely on a pre-determined supply of antibiotics in case of illness. Ensuring those antibiotics remain effective is an important safety measure for future missions.
      The Genomic Enumeration of Antibiotic Resistance in Space (GEARS) experiment, which is managed by NASA’s Ames Research Center in California’s Silicon Valley, involves astronauts swabbing interior surfaces across the space station and testing those samples for evidence of antibiotic-resistant bacteria, and in particular Enterococcus faecalis, a type of bacteria commonly found in the human body. The experiment is the first step in a series of work that seeks to better understand how organisms grow in a space environment, and how those similarities and differences might help improve research back on Earth.
      “Enterococcus is a type of organism that’s been with us since our ancestors crawled out of the ocean, and is a core member of the human gut,” said Christopher Carr, assistant professor at the Georgia Institute of Technology and co-principal investigator of GEARS. “It’s able to survive inside and outside of its host, which has allowed it to become the second highest leading cause of hospital-acquired infections. We want to understand how this type of organism is adapting to the space environment.”
      The GEARS experiment seeks to improve the detection and identification of these bacteria, building on existing efforts to understand what organisms grow on the station’s surfaces.
      “We’ve been monitoring the surfaces of the space station since 2000, but this experiment will give us insight beyond the identities of present organisms, which is currently all that is used for risk assessment,” said Sarah Wallace, a microbiologist at NASA’s Johnson Space Center in Houston and co-principal investigator of GEARS. “With the station orbiting close to Earth, it’s a low-risk space to evaluate and learn more about the frequency of this bacteria and how it responds to the space environment so we can apply this understanding to missions to the Moon and Mars, where resupplies are more complex.”
      Over the next year, astronauts will swab parts of the station and analyze samples by adding an antibiotic to the medium in which the samples will grow. The results will reveal where this and other resistant bacteria are growing and whether they can persist or spread across the station.
      I hope we can shine a light on rapidly analyzing bacteria: if we can do this in space, we can do it on Earth, too.
      Sarah WAllace
      NASA Microbiologist
      The experiment was originally launched to the ISS on the 30th SpaceX commercial resupply services (CRS) mission in March 2024, and the first round of GEARS testing turned up surprising results: very few resistant bacteria colonies, none of which were E. faecalis. This bodes well for the threat of antibiotic resistance in space.
      “There was some cleaning done before swabbing the station, which may have removed some bacteria,” said Carr. To better understand how and where risky bacteria may live, the astronauts paused some cleaning before the second round of swabbing.
      “We want the astronauts to have a clean environment, but we also want to test those high-touch areas, so they intentionally and briefly avoided cleaning some areas so we can understand how bacteria may grow or spread on the station.”
      This experiment is the first study to perform metagenomic sequencing in space, a method that analyzes all the genetic material in a sample to identify and characterize all organisms that are present, an important research and medical diagnostic capability for future deep space missions.
      The GEARS team hopes to create a rapid workflow to analyze bacteria samples, reducing the time between swabbing and test results from days to hours. That workflow could be applied in hospitals and make a huge impact when treating hospital-acquired infections from antibiotic-resistant microbes.
      The result could save lives – more than 35,000 people die each year as a result of antibiotic-resistant infections. The issue is personal to Wallace, who lost a family member to a hospital-acquired infection.
      “It’s not that uncommon: so many people have experienced this kind of loss,” said Wallace. “A method to give an answer in a matter of hours is huge and profound. It’s my job to keep the crew healthy, but we’re also passionate about bringing that work back down to Earth. I hope we can shine a light on rapidly analyzing bacteria: if we can do this in space, we can do it on Earth, too.”
      Genomic Enumeration of Antibiotic Resistance in Space (GEARS) was funded by the Biological and Physical Sciences Space Biology Program, with pioneering funding and support from the Mars Campaign office.
      Share
      Details
      Last Updated Feb 19, 2025 Related Terms
      International Space Station (ISS) Ames Research Center Biological & Physical Sciences Explore More
      2 min read 2024 Annual Highlights of Results from the International Space Station Science
      Article 1 day ago 2 min read Station Science Top News: Feb. 14, 2025
      Article 1 day ago 5 min read NASA Tests Drones to Provide Micrometeorology, Aid in Fire Response
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      NASA’s Cloud-based Confluence Software Helps Hydrologists Study Rivers on a Global Scale
      The Paraná River in northern Argentina. Confluence, which is open-source and free to use, allows researchers to estimate river discharge and suspended sediment levels in Earth’s rivers at a global scale. NASA/ISS Rivers and streams wrap around Earth in complex networks millions of miles long, driving trade, nurturing ecosystems, and stocking critical reserves of freshwater.
      But the hydrologists who dedicate their professional lives to studying this immense web of waterways do so with a relatively limited set of tools. Around the world, a patchwork of just 3,000 or so river gauge stations supply regular, reliable data, making it difficult for hydrologists to detect global trends.
      “The best way to study a river,” said Colin Gleason, Armstrong Professional Development Professor of Civil and Environmental Engineering at the University of Massachusetts, Amherst, “is to get your feet wet and visit it yourself. The second best way to study a river is to use a river gauge.”
      Now, thanks to Gleason and a team of more than 30 researchers, there’s another option: ‘Confluence,’ an analytic collaborative framework that leverages data from NASA’s Surface Water and Ocean Topography (SWOT) mission and the Harmonized Landsat Sentinel-2 archive (HLS) to estimate  river discharge and suspended sediment levels in every river on Earth wider than 50 meters. NASA’s Physical Oceanography Distributed Active Archive Center (PO.DAAC) hosts the software, making it open-source and free for users around the world.
      By incorporating both altimetry data from SWOT which informs discharge estimates, and optical data from HLS, which informs estimates of suspended sediment data, Confluence marks the first time hydrologists can create timely models of river size and water quality at a global scale. Compared to existing workflows for estimating suspended sediment using HLS data, Confluence is faster by a factor of 30.
      I can’t do global satellite hydrology without this system. Or, I could, but it would be extremely time consuming and expensive.
      Colin Gleason

      Nikki Tebaldi, a Cloud Adoption Engineer at NASA’s Jet Propulsion Laboratory (JPL) and Co-Investigator for Confluence, was the lead developer on this project. She said that while the individual components of Confluence have been around for decades, bringing them together within a single, cloud-based processing pipeline was a significant challenge.
      “I’m really proud that we’ve pieced together all of these different algorithms, got them into the cloud, and we have them all executing commands and working,” said Tebaldi.
      Suresh Vannan, former manager of PO.DAAC and a Co-Investigator for Confluence, said this new ability to produce timely, global estimates of river discharge and quality will have a huge impact on hydrological models assessing everything from the health of river ecosystems to snowmelt.
      “There are a bunch of science applications that river discharge can be used for, because it’s pretty much taking a snapshot of what the river looks like, how it behaves. Producing that snapshot on a global scale is a game changer,” said Vannan.
      While the Confluence team is still working with PO.DAAC to complete their software package, users can currently access the Confluence source code here. For tutorials, manuals, and other user guides, visit the PO.DAAC webpage here.
      All of these improvements to the original Confluence algorithms developed for SWOT were made possible by NASA’s Advanced Intelligent Systems Technology (AIST) program, a part of the agency’s Earth Science Technology Office (ESTO), in collaboration with SWOT and PO.DAAC.
      To learn more about opportunities to develop next-generation technologies for studying Earth from outer space, visit ESTO’s solicitation page here.
      Project Lead: Colin Gleason / University of Massachusetts, Amherst
      Sponsoring Organization: Advanced Intelligent Systems Technology program, within NASA’s Earth Science Technology Office
      Share








      Details
      Last Updated Feb 04, 2025 Related Terms
      Science-enabling Technology Earth Science Oceanography SWOT (Surface Water and Ocean Topography) Explore More
      15 min read Summary of the 53rd U.S.–Japan ASTER Science Team Meeting


      Article


      2 weeks ago
      23 min read Summary of the 2024 Quadrennial Ozone Symposium


      Article


      2 weeks ago
      2 min read An Introduction to NASA Citizen Science for Service Members, Veterans and their Families


      Article


      2 weeks ago
      View the full article
    • By NASA
      Caption: Illustration of the four PUNCH spacecraft in low Earth orbit. Credit: NASA’s Goddard Space Flight Center Conceptual Image Lab
      NASA will hold a media teleconference at 2 p.m. EST on Tuesday, Feb. 4, to share information about the agency’s upcoming PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission, which is targeted to launch no earlier than Thursday, Feb. 27.

      The agency’s PUNCH mission is a constellation of four small satellites. When they arrive in low Earth orbit, the satellites will make global, 3D observations of the Sun’s outer atmosphere, the corona, and help NASA learn how the mass and energy there become solar wind. By imaging the Sun’s corona and the solar wind together, scientists hope to better understand the entire inner heliosphere – Sun, solar wind, and Earth – as a single connected system.
      Audio of the teleconference will stream live on the agency’s website at:
      https://www.nasa.gov/live
      Participants include:
      Madhulika Guhathakurta, NASA program scientist, NASA Headquarters Nicholeen Viall, PUNCH mission scientist, NASA’s Goddard Space Flight Center Craig DeForest, PUNCH principal investigator, Southwest Research Institute To participate in the media teleconference, media must RSVP no later than 12 p.m. on Feb. 4 to: Abbey Interrante at: abbey.a.interrante@nasa.gov. NASA’s media accreditation policy is available online. 
      The PUNCH mission will share a ride to space with NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) space telescope on a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California. 
      The Southwest Research Institute in Boulder, Colorado, leads the PUNCH mission. The mission is managed by the Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington. 
      To learn more about PUNCH, please visit:  
      https://nasa.gov/punch
      -end-
      Karen Fox
      Headquarters, Washington
      202-358-1600
      karen.fox@nasa.gov
      Sarah Frazier
      Goddard Space Flight Center, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      View the full article
    • By NASA
      Perseus Cluster: X-ray: NASA/CXC/SAO/V. Olivares et al.; Optical/IR: DSS; H-alpha: CFHT/SITELLE; Centaurus Cluster: X-ray: NASA/CXC/SAO/V. Olivaresi et al.; Optical/IR: NASA/ESA/STScI; H-alpha: ESO/VLT/MUSE; Image Processing: NASA/CXC/SAO/N. Wolk Astronomers have taken a crucial step in showing that the most massive black holes in the universe can create their own meals. Data from NASA’s Chandra X-ray Observatory and the Very Large Telescope (VLT) provide new evidence that outbursts from black holes can help cool down gas to feed themselves.
      This study was based on observations of seven clusters of galaxies. The centers of galaxy clusters contain the universe’s most massive galaxies, which harbor huge black holes with masses ranging from millions to tens of billions of times that of the Sun. Jets from these black holes are driven by the black holes feasting on gas.
      These images show two of the galaxy clusters in the study, the Perseus Cluster and the Centaurus Cluster. Chandra data represented in blue reveals X-rays from filaments of hot gas, and data from the VLT, an optical telescope in Chile, shows cooler filaments in red.
      The results support a model where outbursts from the black holes trigger hot gas to cool and form narrow filaments of warm gas. Turbulence in the gas also plays an important role in this triggering process.
      According to this model, some of the warm gas in these filaments should then flow into the centers of the galaxies to feed the black holes, causing an outburst. The outburst causes more gas to cool and feed the black holes, leading to further outbursts.
      This model predicts there will be a relationship between the brightness of filaments of hot and warm gas in the centers of galaxy clusters. More specifically, in regions where the hot gas is brighter, the warm gas should also be brighter. The team of astronomers has, for the first time, discovered such a relationship, giving critical support for the model.
      This result also provides new understanding of these gas-filled filaments, which are important not just for feeding black holes but also for causing new stars to form. This advance was made possible by an innovative technique that isolates the hot filaments in the Chandra X-ray data from other structures, including large cavities in the hot gas created by the black hole’s jets.
      The newly found relationship for these filaments shows remarkable similarity to the one found in the tails of jellyfish galaxies, which have had gas stripped away from them as they travel through surrounding gas, forming long tails. This similarity reveals an unexpected cosmic connection between the two objects and implies a similar process is occurring in these objects.
      This work was led by Valeria Olivares from the University of Santiago de Chile, and was published Monday in Nature Astronomy. The study brought together international experts in optical and X-ray observations and simulations from the United States, Chile, Australia, Canada, and Italy. The work relied on the capabilities of the MUSE (Multi Unit Spectroscopic Explorer) instrument on the VLT, which generates 3D views of the universe.
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features composite images shown side-by-side of two different galaxy clusters, each with a central black hole surrounded by patches and filaments of gas. The galaxy clusters, known as Perseus and Centaurus, are two of seven galaxy clusters observed as part of an international study led by the University of Santiago de Chile.
      In each image, a patch of purple with neon pink veins floats in the blackness of space, surrounded by flecks of light. At the center of each patch is a glowing, bright white dot. The bright white dots are black holes. The purple patches represent hot X-ray gas, and the neon pink veins represent filaments of warm gas. According to the model published in the study, jets from the black holes impact the hot X-ray gas. This gas cools into warm filaments, with some warm gas flowing back into the black hole. The return flow of warm gas causes jets to again cool the hot gas, triggering the cycle once again.
      While the images of the two galaxy clusters are broadly similar, there are significant visual differences. In the image of the Perseus Cluster on the left, the surrounding flecks of light are larger and brighter, making the individual galaxies they represent easier to discern. Here, the purple gas has a blue tint, and the hot pink filaments appear solid, as if rendered with quivering strokes of a paintbrush. In the image of the Centaurus Cluster on the right, the purple gas appears softer, with a more diffuse quality. The filaments are rendered in more detail, with feathery edges, and gradation in color ranging from pale pink to neon red.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By USH
      On January 22, 2025, a mysterious boom echoed through the suburbs of Salt Lake City, Utah, leaving both residents and authorities searching for answers. The incident occurred around 3 AM, startling communities near the state’s capital as a massive explosion shattered in the sky. 

      Security cameras captured the event, showing the night sky illuminated by a bright flash, followed by the thunderous noise that residents reported hearing from miles away. 
      “When we’re getting calls from multiple cities miles apart, it’s clear this was something significant, that’s just not typical" said Bill Merritt of the West Valley City Police Department, who described the event as very bizarre. 
      Speculation about the origin of the boom ranges from a meteorite entering the atmosphere to possible experiments with explosives and even theories of extraterrestrial involvement.
       
      Interestingly, this wasn’t an isolated event. Just 10 days earlier, on January 12, a similar phenomenon occurred in San Dimas, California. In that case, CCTV footage also captured a bright flash followed by a loud explosion, eerily similar to what unfolded in Utah. 
      When you add these unexplained flashes and booms to the growing list of strange phenomena across the U.S. and other parts of the world—such as unidentified drones, glowing orbs in the sky, flickering streetlights, reports of mysterious fog, and snow that appears to resemble artificial flakes many are left asking: what is really going on and are all these strange events somehow interconnected?
         
      The video above begins with the flash and boom in San Dimas, California, and later features, among other topics, the appearance of unusual snow.View the full article
  • Check out these Videos

×
×
  • Create New...