Members Can Post Anonymously On This Site
View of the Moon - February 5th
-
Similar Topics
-
By NASA
Caption: The Intuitive Machines lunar lander that will deliver NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign is encapsulated in the fairing of the SpaceX Falcon 9 rocket. Credit: SpaceX Carrying NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, the Intuitive Machines IM-2 mission is targeted to launch no earlier than Wednesday, Feb. 26. The mission will lift off on a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.
Live launch coverage will air on NASA+ with prelaunch events starting Tuesday, Feb. 25. Learn how to watch NASA content through a variety of platforms, including social media. Follow all events at:
https://www.nasa.gov/live
After the launch, Intuitive Machines’ lunar lander, Athena, will spend approximately one week in transit to the Moon before landing on the lunar surface no earlier than Thursday, March 6. The lander will carry NASA science investigations and technology demonstrations to further our understanding of the Moon’s environment and help prepare for future human missions to the lunar surface, as part of the agency’s Moon to Mars exploration approach.
Among the items on Intuitive Machines’ lander, the IM-2 mission will be one of the first on-site demonstrations of resource use on the Moon. A drill and mass spectrometer will measure the potential presence of volatiles or gases from lunar soil in Mons Mouton, a lunar plateau in the Moon’s South Pole. In addition, a passive Laser Retroreflector Array (LRA) on the top deck of the lander will bounce laser light back at any orbiting or incoming spacecraft to give future spacecraft a permanent reference point on the lunar surface. Other technology instruments on this delivery will demonstrate a robust surface communications system and deploy a propulsive drone that can hop across the lunar surface.
Launching as a rideshare with the IM-2 delivery, NASA’s Lunar Trailblazer spacecraft also will begin its journey to lunar orbit, where it will map the distribution of the different forms of water on the Moon.
The deadline has passed for media accreditation for in-person coverage of this launch. The agency’s media accreditation policy is available online. More information about media accreditation is available by emailing: ksc-media-accreditat@mail.nasa.gov.
Full coverage of this mission is as follows (all times Eastern):
Tuesday, Feb. 25
11 a.m. – Lunar science and technology media teleconference with the following participants:
Joel Kearns, deputy associate administrator for exploration, Science Mission Directorate, NASA Headquarters Niki Werkheiser, director, technology maturation, Space Technology Mission Directorate, NASA Headquarters Jackie Quinn, Polar Resources Ice Mining Experiment 1 (PRIME-1) project manager, NASA Kennedy Daniel Cremons, LRA deputy principal investigator, NASA’s Goddard Space Flight Center Bethany Ehlmann, Lunar Trailblazer principal investigator, Caltech Trent Martin, senior vice president, space systems, Intuitive Machines Thierry Klein, president, Bell Labs Solution Research, Nokia Audio of the teleconference will stream live on the agency’s website:
https://www.nasa.gov/live/
Media may ask questions via phone only. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 10 a.m. EST Tuesday, Feb. 25, at: ksc-newsroom@mail.nasa.gov.
Wednesday, Feb. 26
11:30 a.m. – Lunar delivery readiness media teleconference with the following participants:
Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Clayton Turner, associate administrator, Space Technology Mission Directorate, NASA Headquarters Trent Martin, senior vice president, space systems, Intuitive Machines William Gerstenmaier, vice president, build and flight reliability, SpaceX Melody Lovin, launch weather officer, Cape Canaveral Space Force Station’s 45th Weather Squadron Audio of the teleconference will stream live on the agency’s website:
https://www.nasa.gov/live/
Media may ask questions via phone only. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 10 a.m. EST Wednesday, Feb. 26, at: ksc-newsroom@mail.nasa.gov.
Launch coverage will begin on NASA+ approximately 45 minutes before liftoff. A specific time will be shared the week of Feb. 24.
NASA Launch Coverage
Audio only of the media teleconferences and launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, -1240, or -7135. On launch day, the full mission broadcast can be heard on -1220 and -1240, while the countdown net only can be heard on -7135 beginning approximately one hour before the mission broadcast begins.
On launch day, a “tech feed” of the launch without NASA TV commentary will be carried on the NASA TV media channel.
NASA Website Launch Coverage
Launch day coverage of the mission will be available on the NASA website. Coverage will include live streaming and blog updates beginning Feb. 26, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468.
NASA Virtual Guests for Launch
Members of the public can register to attend this launch virtually. Registrants will receive mission updates and activities by email, including curated mission resources, schedule updates, and a virtual guest passport stamp following a successful launch. Print your passport and get ready to add your stamp!
Watch, Engage on Social Media
Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtag #Artemis. You can also stay connected by following and tagging these accounts:
X: @NASA, @NASAKennedy, @NASAArtemis, @NASAMoon
Facebook: NASA, NASAKennedy, NASAArtemis
Instagram: @NASA, @NASAKennedy, @NASAArtemis
Coverage en Español
Did you know NASA has a Spanish section called NASA en español? Check out NASA en español on X, Instagram, Facebook, and YouTube for additional mission coverage.
Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.
For more information about the agency’s CLPS initiative, see:
https://www.nasa.gov/clps
-end-
Karen Fox / Jasmine Hopkins
Headquarters, Washington
301-286-6284 / 321-432-4624
karen.c.fox@nasa.gov / jasmine.s.hopkins@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
Antonia Jaramillo
Kennedy Space Center, Florida
321-501-8425
antonia.jaramillobotero@nasa.gov
Share
Details
Last Updated Feb 21, 2025 Related Terms
Missions Artemis Commercial Lunar Payload Services (CLPS) Science Mission Directorate Space Technology Mission Directorate View the full article
-
By NASA
6 Min Read NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind
Earth is immersed in material streaming from the Sun. This stream, called the solar wind, is washing over our planet, causing breathtaking auroras, impacting satellites and astronauts in space, and even affecting ground-based infrastructure.
NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission will be the first to image the Sun’s corona, or outer atmosphere, and solar wind together to better understand the Sun, solar wind, and Earth as a single connected system.
Launching no earlier than Feb. 28, 2025, aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California, PUNCH will provide scientists with new information about how potentially disruptive solar events form and evolve. This could lead to more accurate predictions about the arrival of space weather events at Earth and impact on humanity’s robotic explorers in space.
“What we hope PUNCH will bring to humanity is the ability to really see, for the first time, where we live inside the solar wind itself,” said Craig DeForest, principal investigator for PUNCH at Southwest Research Institute’s Solar System Science and Exploration Division in Boulder, Colorado.
This video can be freely shared and downloaded at https://svs.gsfc.nasa.gov/14773.
Video credit: NASA’s Goddard Space Flight Center Seeing Solar Wind in 3D
The PUNCH mission’s four suitcase-sized satellites have overlapping fields of view that combine to cover a larger swath of sky than any previous mission focused on the corona and solar wind. The satellites will spread out in low Earth orbit to construct a global view of the solar corona and its transition to the solar wind. They will also track solar storms like coronal mass ejections (CMEs). Their Sun-synchronous orbit will enable them to see the Sun 24/7, with their view only occasionally blocked by Earth.
Typical camera images are two dimensional, compressing the 3D subject into a flat plane and losing information. But PUNCH takes advantage of a property of light called polarization to reconstruct its images in 3D. As the Sun’s light bounces off material in the corona and solar wind, it becomes polarized — meaning the light waves oscillate in a particular way that can be filtered, much like how polarized sunglasses filter out glare off of water or metal. Each PUNCH spacecraft is equipped with a polarimeter that uses three distinct polarizing filters to capture information about the direction that material is moving that would be lost in typical images.
“This new perspective will allow scientists to discern the exact trajectory and speed of coronal mass ejections as they move through the inner solar system,” said DeForest. “This improves on current instruments in two ways: with three-dimensional imaging that lets us locate and track CMEs which are coming directly toward us; and with a broad field of view, which lets us track those CMEs all the way from the Sun to Earth.”
All four spacecraft are synchronized to serve as a single “virtual instrument” that spans the whole PUNCH constellation.
Crews conduct additional solar array deployment testing for NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) satellites at Astrotech Space Operations located on Vandenberg Space Force Base in California on Wednesday, Jan. 22, 2025. USSF 30th Space Wing/Alex Valdez The PUNCH satellites include one Narrow Field Imager and three Wide Field Imagers. The Narrow Field Imager (NFI) is a coronagraph, which blocks out the bright light from the Sun to better see details in the Sun’s corona, recreating what viewers on Earth see during a total solar eclipse when the Moon blocks the face of the Sun — a narrower view that sees the solar wind closer to the Sun. The Wide Field Imagers (WFI) are heliospheric imagers that view the very faint, outermost portion of the solar corona and the solar wind itself — giving a wide view of the solar wind as it spreads out into the solar system.
“I’m most excited to see the ‘inbetweeny’ activity in the solar wind,” said Nicholeen Viall, PUNCH mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This means not just the biggest structures, like CMEs, or the smallest interactions, but all the different types of solar wind structures that fill that in between area.”
When these solar wind structures from the Sun reach Earth’s magnetic field, they can drive dynamics that affect Earth’s radiation belts. To launch spacecraft through these belts, including ones that will carry astronauts to the Moon and beyond, scientists need to understand the solar wind structure and changes in this region.
Building Off Other Missions
“The PUNCH mission is built on the shoulders of giants,” said Madhulika Guhathakurta, PUNCH program scientist at NASA Headquarters in Washington. “For decades, heliophysics missions have provided us with glimpses of the Sun’s corona and the solar wind, each offering critical yet partial views of our dynamic star’s influence on the solar system.”
When scientists combine data from PUNCH and NASA’s Parker Solar Probe, which flies through the Sun’s corona, they will see both the big picture and the up-close details. Working together, Parker Solar Probe and PUNCH span a field of view from a little more than half a mile (1 kilometer) to over 160 million miles (about 260 million kilometers).
Additionally, the PUNCH team will combine their data with diverse observations from other missions, like NASA’s CODEX (Coronal Diagnostic Experiment) technology demonstration, which views the corona even closer to the surface of the Sun from its vantage point on the International Space Station. PUNCH’s data also complements observations from NASA’s EZIE (Electrojet Zeeman Imaging Explorer) — targeted for launch in March 2025 — which investigates the magnetic field perturbations associated with Earth’s high-altitude auroras that PUNCH will also spot in its wide-field view.
A conceptual animation showing the heliosphere, the vast bubble that is generated by the Sun’s magnetic field and envelops all the planets.
NASA’s Goddard Space Flight Center Conceptual Image Lab As the solar wind that PUNCH will observe travels away from the Sun and Earth, it will then be studied by the IMAP (Interstellar Mapping and Acceleration Probe) mission, which is targeting a launch in 2025.
“The PUNCH mission will bridge these perspectives, providing an unprecedented continuous view that connects the birthplace of the solar wind in the corona to its evolution across interplanetary space,” said Guhathakurta.
The PUNCH mission is scheduled to conduct science for at least two years, following a 90-day commissioning period after launch. The mission is launching as a rideshare with the agency’s next astrophysics observatory, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer).
“PUNCH is the latest heliophysics addition to the NASA fleet that delivers groundbreaking science every second of every day,” said Joe Westlake, heliophysics division director at NASA Headquarters in Washington. “Launching this mission as a rideshare bolsters its value to the nation by optimizing every pound of launch capacity to maximize the scientific return for the cost of a single launch.”
The PUNCH mission is led by Southwest Research Institute’s offices in San Antonio, Texas, and Boulder, Colorado. The mission is managed by the Explorers Program Office at NASA Goddard for NASA’s Science Mission Directorate in Washington.
By Abbey Interrante
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Header Image:
An artist’s concept showing the four PUNCH satellites orbiting Earth.
Credits: NASA’s Goddard Space Flight Center Conceptual Image Lab
Share
Details
Last Updated Feb 21, 2025 Related Terms
Heliophysics Coronal Mass Ejections Goddard Space Flight Center Heliophysics Division Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate Solar Wind Space Weather The Sun Explore More
2 min read Hubble Spies a Spiral That May Be Hiding an Imposter
Article
3 hours ago
3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska
Article
3 days ago
2 min read NASA Science: Being Responsive to Executive Orders
Article
3 days ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
Week in images: 17-21 February 2025
Discover our week through the lens
View the full article
-
By NASA
Before Apollo astronauts set foot upon the Moon, much remained unknown about the lunar surface. While most scientists believed the Moon had a solid surface that would support astronauts and their landing craft, a few believed a deep layer of dust covered it that would swallow any visitors. Until 1964, no closeup photographs of the lunar surface existed, only those obtained by Earth-based telescopes.
NASA’s Jet Propulsion Laboratory in Pasadena, California, managed the Ranger program, a series of spacecraft designed to return closeup images before impacting on the Moon’s surface. Ranger 7 first accomplished that goal in July 1964. On Feb. 17, 1965, its successor Ranger 8 launched toward the Moon, and three days later returned images of the Moon. The mission’s success helped the country meet President John F. Kennedy’s goal of a human Moon landing before the end of the decade.
Schematic diagram of the Ranger 8 spacecraft, showing its major components. NASA/JPL The television system aboard Ranger 8 showing its six cameras.NASA/JPL. Launch of Ranger 8. NASA. Ranger 8 lifted off from Cape Kennedy, now Cape Canaveral, Florida, on Feb. 17, 1965. The Atlas-Agena rocket first placed the spacecraft into Earth orbit before sending it on a lunar trajectory. The next day, the spacecraft carried out a mid-course correction, and on Feb. 20, Ranger 8 reached the Moon. The spacecraft’s six cameras turned on as planned, about eight minutes earlier than its predecessor to obtain images comparable in resolution to ground-based photographs for calibration purposes. Ranger 8 took its first photograph at an altitude of 1,560 miles, and during its final 23 minutes of flight, the spacecraft sent back 7,137 images of the lunar surface. The last image, taken at an altitude of 1,600 feet and 0.28 seconds before Ranger 8 impacted at 1.67 miles per second, had a resolution of about five feet. The spacecraft impacted 16 miles from its intended target in the Sea of Tranquility, ending a flight of 248,900 miles. Scientists had an interest in this area of the Moon as a possible landing zone for a future human landing, and indeed Apollo 11 landed 44 miles southeast of the Ranger 8 impact site in July 1969.
Ranger 8’s first image from an altitude of 1,560 miles.NASA/JPL. Ranger 8 image from an altitude of 198 miles, showing craters Ritter and Sabine.NASA/JPL. Ranger 8’s final images, taken at an altitude as low as 1,600 feet. NASA/JPL. One more Ranger mission followed, Ranger 9, in March 1965. Television networks broadcast Ranger 9’s images of the Alphonsus crater and the surrounding area “live” as the spacecraft approached its impact site in the crater – letting millions of Americans see the Moon up-close as it happened. Based on the photographs returned by the last three Rangers, scientists felt confident to move on to the next phase of robotic lunar exploration, the Surveyor series of soft landers. The Ranger photographs provided confidence that the lunar surface could support a soft-landing and that the Sea of Tranquility presented a good site for the first human landing. A little more than four years after the final Ranger images, Apollo 11 landed the first humans on the Moon.
Impact sites of Rangers 7, 8, and 9. NASA/JPL. The Ranger 8 impact crater, marked by the blue circle, photographed by Lunar Orbiter 2 in 1966.NASA/JPL. Lunar Reconnaissance Orbiter image of the Ranger 8 impact crater, taken in 2012 at a low sun angle.NASA/Goddard Space Flight Center/Arizona State University. The impacts of the Ranger probes left visible craters on the lunar surface, later photographed by orbiting spacecraft. Lunar Orbiter 2 and Apollo 16 both imaged the Ranger 8 impact site at relatively low resolution in 1966 and 1972, respectively. The Lunar Reconnaissance Orbiter imaged the crash site in greater detail in 2012.
Watch a brief video about the Ranger 8 impact on the Moon.
Explore More
5 min read 60 Years Ago: Ranger 7 Photographs the Moon
Article 7 months ago 8 min read 55 Years Ago: Apollo 11’s One Small Step, One Giant Leap
Article 7 months ago 4 min read NASA’s Artemis II Crew Uses Iceland Terrain for Lunar Training
At first glance, it seems like a scene from an excursion on the Moon’s surface…except…
Article 5 months ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.