Members Can Post Anonymously On This Site
XMM-Newton finds two stray supernova remnants
-
Similar Topics
-
By European Space Agency
The second of the Meteosat Third Generation (MTG) satellites and the first instrument for the Copernicus Sentinel-4 mission are fully integrated and, having completed their functional and environmental tests, they are now ready to embark on their journey to the US for launch this summer.
View the full article
-
By European Space Agency
On 13 and 14 February 2025, the European Space Agency (ESA) celebrated 20 years of supporting space innovation through its ESA Business Incubation Centres (BIC) network. The event in Munich, Germany, brought together entrepreneurs, successful space companies, experts and policymakers.
View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities Hubble captured this image of supernova SN 2022abvt (the pinkish-white dot at image center) about two months after it was discovered in 2022. ESA/Hubble & NASA, R. J. Foley (UC Santa Cruz)
Download this image
A supernova and its host galaxy are the subject of this NASA/ESA Hubble Space Telescope image. The galaxy in question is LEDA 132905 in the constellation Sculptor. Even at more than 400 million light-years away, LEDA 132905’s spiral structure is faintly visible, as are patches of bright blue stars.
The bright pinkish-white dot in the center of the image, between the bright center of the galaxy and its faint left edge, is a supernova named SN 2022abvt. Discovered in late 2022, Hubble observed SN 2022abvt about two months later. This image uses data from a study of Type Ia supernovae, which occur when the exposed core of a dead star ignites in a sudden, destructive burst of nuclear fusion. Researchers are interested in this type of supernova because they can use them to measure precise distances to other galaxies.
The universe is a big place, and supernova explosions are fleeting. How is it possible to be in the right place at the right time to catch a supernova when it happens? Today, robotic telescopes that continuously scan the night sky discover most supernovae. The Asteroid Terrestrial-impact Last Alert System, or ATLAS, spotted SN 2022abvt. As the name suggests, ATLAS tracks down the faint, fast-moving signals from asteroids close to Earth. In addition to searching out asteroids, ATLAS also keeps tabs on objects that brighten or fade suddenly, like supernovae, variable stars, and galactic centers powered by hungry black holes.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore More
The Death Throes of Stars
Homing in on Cosmic Explosions
Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Feb 07, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Hubble Space Telescope Galaxies Goddard Space Flight Center Spiral Galaxies Stars Supernovae The Universe Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble’s Night Sky Challenge
Reshaping Our Cosmic View: Hubble Science Highlights
Hubble’s 35th Anniversary
View the full article
-
By NASA
5 min read
NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm
Key Points
The May 2024 solar storm created two new temporary belts of high-energy particles surrounding Earth. Such belts have been seen before, but the new ones were particularly long lasting, especially the new proton belt. The findings are particularly important for spacecraft launching into geostationary orbits, which can be damaged as they traverse the dangerous belts. The largest solar storm in two decades hit Earth in May 2024. For several days, wave after wave of high-energy charged particles from the Sun rocked the planet. Brilliant auroras engulfed the skies, and some GPS communications were temporarily disrupted.
With the help of a serendipitously resurrected small NASA satellite, scientists have discovered that this storm also created two new temporary belts of energetic particles encircling Earth. The findings are important to understanding how future solar storms could impact our technology.
The new belts formed between two others that permanently surround Earth called the Van Allen Belts. Shaped like concentric rings high above Earth’s equator, these permanent belts are composed of a mix of high-energy electrons and protons that are trapped in place by Earth’s magnetic field. The energetic particles in these belts can damage spacecraft and imperil astronauts who pass through them, so understanding their dynamics is key to safe spaceflight.
The May 2024 solar storm created two extra radiation belts, sandwiched between the two permanent Van Allen Belts. One of the new belts, shown in purple, included a population of protons, giving it a unique composition that hadn’t been seen before. NASA/Goddard Space Flight Center/Kristen Perrin The discovery of the new belts, made possible by NASA’s Colorado Inner Radiation Belt Experiment (CIRBE) satellite and published Feb. 6, 2025, in the Journal of Geophysical Research: Space Physics, is particularly important for protecting spacecraft launching into geostationary orbits, since they travel through the Van Allen Belts several times before reaching their final orbit.
New Belts Amaze Scientists
Temporary belts have been detected in the aftermath of large solar storms before. But while previous belts have been composed mostly of electrons, the innermost of the two new belts also included energetic protons. This unique composition is likely due to the strength and composition of the solar storm.
“When we compared the data from before and after the storm, I said, ‘Wow, this is something really new,’” said the paper’s lead author Xinlin Li, a professor at the Laboratory for Atmospheric and Space Physics (LASP) and Department of Aerospace Engineering Sciences at the University of Colorado Boulder. “This is really stunning.”
The new belts also seem to have lasted much longer than previous belts. Whereas previous temporary belts lasted around four weeks, the new belt composed primary of electrons lasted more than three months. The other belt, that also includes protons, has lasted much longer than the electron belt because it is in a more stable region and is less prone to the physical processes that can knock the particles out of orbit. It is likely still there today.
“These are really high-energy electrons and protons that have found their way into Earth’s inner magnetic environment,” said David Sibeck, former mission scientist for NASA’s Van Allen Probes and research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, who was not involved with the new study. “Some might stay in this place for a very long time.”
How long such belts stick around depends on passing solar storms. Large storms can provide the energy to knock particles in these belts out of their orbits and send them spiraling off into space or down to Earth. One such storm at the end of June significantly decreased the size of the new electron belt and another in August nearly erased the remainder of that electron belt, though a small population of high-energy electrons endured.
CubeSat Fortuitously Comes Back to Life to Make the Discovery
The new discovery was made by NASA’s CIRBE satellite, a CubeSat about the size of a shoebox that circled the planet’s magnetic poles in a low Earth orbit from April 2023 to October 2024. CIRBE housed an instrument called the Relativistic Electron Proton Telescope integrated little experiment-2 (REPTile-2) — a miniaturized and upgraded version of an instrument that flew aboard NASA’s Van Allen Probes, which made the first discovery of a temporary electron belt in 2013.
The CIRBE CubeSat in the laboratory before launch. CIRBE was designed and built by LASP at the University of Colorado Boulder. Xinlin Li/LASP/CU Boulder After a year in space, the CubeSat experienced an anomaly and unexpectedly went quiet on April 15, 2024. The scientists were disappointed to miss the solar storm in May but were able to rely on other spacecraft to provide some preliminary data on the electron belt. Luckily, on June 15, the spacecraft sprang back to life and resumed taking measurements. The data provided high-resolution information that couldn’t be gleaned by any other instrument and allowed the scientists to understand the magnitude of the new belts.
“Once we resumed measurements, we were able to see the new electron belt, which wasn’t visible in the data from other spacecraft,” Li said.
Having the CubeSat in orbit to measure the effect of the solar storm has been bittersweet, Li said. While it provided the opportunity to measure the effects of such a large event, the storm also increased atmospheric drag on the CubeSat, which caused its orbit to decrease prematurely. As a result, the CubeSat deorbited in October 2024. However, the spacecraft’s data makes it all worth it.
“We are very proud that our very small CubeSat made such a discovery,” Li said.
CIRBE was designed and built by LASP at the University of Colorado Boulder and was launched through NASA’s CubeSat Launch Initiative (CSLI). The mission is sponsored by NASA’s Heliophysics Flight Opportunities for Research & Technology (H-FORT) program.
By Mara Johnson-Groh
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Feb 06, 2025 Related Terms
Heliophysics CubeSats Goddard Space Flight Center Heliophysics Division Ionosphere Space Weather The Sun Van Allen Probes Explore More
5 min read Straight Shot: Hubble Investigates Galaxy with Nine Rings
Article
2 days ago
2 min read Hubble Spots a Supernova
Article
6 days ago
2 min read Hubble Studies the Tarantula Nebula’s Outskirts
Article
2 weeks ago
Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Captured by the HiRISE camera on NASA’s Mars Reconnaissance Orbiter on March 4, 2021, this impact crater was found in Cerberus Fossae, a seismically active region of the Red Planet. Scien-tists matched its appearance on the surface with a quake detected by NASA’s InSight lander. With help from AI, scientists discovered a fresh crater made by an impact that shook material as deep as the Red Planet’s mantle.
Meteoroids striking Mars produce seismic signals that can reach deeper into the planet than previously known. That’s the finding of a pair of new papers comparing marsquake data collected by NASA’s InSight lander with impact craters spotted by the agency’s Mars Reconnaissance Orbiter (MRO).
The papers, published on Monday, Feb. 3, in Geophysical Research Letters (GRL), highlight how scientists continue to learn from InSight, which NASA retired in 2022 after a successful extended mission. InSight set the first seismometer on Mars, detecting more than 1,300 marsquakes, which are produced by shaking deep inside the planet (caused by rocks cracking under heat and pressure) and by space rocks striking the surface.
By observing how seismic waves from those quakes change as they travel through the planet’s crust, mantle, and core, scientists get a glimpse into Mars’ interior, as well as a better understanding of how all rocky worlds form, including Earth and its Moon.
A camera on the robotic arm of NASA’s InSight captured the lander setting down its Wind and Thermal Shield on Feb. 2, 2019. The shield covered InSight’s seismometer, which captured data from more than 1,300 marsquakes over the lander’s four-year mission. Researchers have in the past taken images of new impact craters and found seismic data that matches the date and location of the craters’ formation. But the two new studies represent the first time a fresh impact has been correlated with shaking detected in Cerberus Fossae, an especially quake-prone region of Mars that is 1,019 miles (1,640 kilometers) from InSight.
The impact crater is 71 feet (21.5 meters) in diameter and much farther from InSight than scientists expected, based on the quake’s seismic energy. The Martian crust has unique properties thought to dampen seismic waves produced by impacts, and researchers’ analysis of the Cerberus Fossae impact led them to conclude that the waves it produced took a more direct route through the planet’s mantle.
InSight’s team will now have to reassess their models of the composition and structure of Mars’ interior to explain how impact-generated seismic signals can go that deep.
“We used to think the energy detected from the vast majority of seismic events was stuck traveling within the Martian crust,” said InSight team member Constantinos Charalambous of Imperial College London. “This finding shows a deeper, faster path — call it a seismic highway — through the mantle, allowing quakes to reach more distant regions of the planet.”
Spotting Mars Craters With MRO
A machine learning algorithm developed at NASA’s Jet Propulsion Laboratory in Southern California to detect meteoroid impacts on Mars played a key role in discovering the Cerberus Fossae crater. In a matter of hours, the artificial intelligence tool can sift through tens of thousands of black-and-white images captured by MRO’s Context Camera, detecting the blast zones around craters. The tool selects candidate images for examination by scientists practiced at telling which subtle colorations on Mars deserve more detailed imaging by MRO’s High-Resolution Imaging Science Experiment (HiRISE) camera.
“Done manually, this would be years of work,” said InSight team member Valentin Bickel of the University of Bern in Switzerland. “Using this tool, we went from tens of thousands of images to just a handful in a matter of days. It’s not quite as good as a human, but it’s super fast.”
Bickel and his colleagues searched for craters within roughly 1,864 miles (3,000 kilometers) of InSight’s location, hoping to find some that formed while the lander’s seismometer was recording. By comparing before-and-after images from the Context Camera over a range of time, they found 123 fresh craters to cross-reference with InSight’s data; 49 of those were potential matches with quakes detected by the lander’s seismometer. Charalambous and other seismologists filtered that pool further to identify the 71-foot Cerberus Fossae impact crater.
Deciphering More, Faster
The more scientists study InSight’s data, the better they become at distinguishing signals originating inside the planet from those caused by meteoroid strikes. The impact found in Cerberus Fossae will help them further refine how they tell these signals apart.
“We thought Cerberus Fossae produced lots of high-frequency seismic signals associated with internally generated quakes, but this suggests some of the activity does not originate there and could actually be from impacts instead,” Charalambous said.
The findings also highlight how researchers are harnessing AI to improve planetary science by making better use of all the data gathered by NASA and ESA (European Space Agency) missions. In addition to studying Martian craters, Bickel has used AI to search for landslides, dust devils, and seasonal dark features that appear on steep slopes, called slope streaks or recurring slope linae. AI tools have been used to find craters and landslides on Earth’s Moon as well.
“Now we have so many images from the Moon and Mars that the struggle is to process and analyze the data,” Bickel said. “We’ve finally arrived in the big data era of planetary science.”
More About InSight
JPL managed InSight for the agency’s Science Mission Directorate. InSight was part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supported spacecraft operations for the mission.
A number of European partners, including France’s Centre National d’Études Spatiales (CNES) and the German Aerospace Center (DLR), supported the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument to NASA, with the principal investigator at IPGP (Institut de Physique du Globe de Paris). Significant contributions for SEIS came from IPGP; the Max Planck Institute for Solar System Research (MPS) in Germany; the Swiss Federal Institute of Technology (ETH Zurich) in Switzerland; Imperial College London and Oxford University in the United Kingdom; and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain’s Centro de Astrobiología (CAB) supplied the temperature and wind sensors.
A division of Caltech in Pasadena, California, JPL manages the Mars Reconnaissance Orbiter Project for NASA’s Science Mission Directorate, Washington. The University of Arizona, in Tucson, operates HiRISE, which was built by BAE Systems in Boulder, Colorado. The Context Camera was built by, and is operated by, Malin Space Science Systems in San Diego.
For more about Insight, visit:
https://science.nasa.gov/mission/insight/
For more about MRO, visit:
https://science.nasa.gov/mission/mars-reconnaissance-orbiter/
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
|karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-013
Share
Details
Last Updated Feb 03, 2025 Related Terms
InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Jet Propulsion Laboratory Mars Mars Reconnaissance Orbiter (MRO) Explore More
5 min read 6 Things to Know About SPHEREx, NASA’s Newest Space Telescope
Article 3 days ago 5 min read NASA Juno Mission Spots Most Powerful Volcanic Activity on Io to Date
Article 6 days ago 5 min read NASA JPL Prepping for Full Year of Launches, Mission Milestones
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.