Members Can Post Anonymously On This Site
Scientists spot tiny Sun jets driving fast and slow solar wind
-
Similar Topics
-
By NASA
3 Min Read How Does the Sun Behave? (Grades K-4)
This article is for students grades K-4.
The Sun is a star. It is the biggest object in our solar system. The Sun is about 93 million miles away from Earth and about 4.5 billion years old. The Sun affects Earth’s weather, seasons, climate, and more. Let’s learn about how the Sun behaves.
Why is the Sun warm and bright?
The Sun is a giant ball made of hydrogen and helium gases. Deep in the center of the Sun, hydrogen atoms are pressed together. This forms helium. When this happens, energy is released. That energy is the heat and light we feel and see all the way here on Earth.
Hydrogen atoms are pressed together to form helium. This releases energy in the form of heat and light. Does the Sun ever change?
Sometimes, the Sun is very active. It gives off a lot of energy. Other times, it is quieter. It gives off less energy. This pattern is called the solar cycle. One solar cycle lasts about 11 years.
Scientists call the time when the Sun is active “solar maximum.” During this time, we see darker, cooler spots on the Sun’s surface. These are called sunspots. When the Sun is less active, scientists call that “solar minimum.”
Scientists call the time when the Sun is active “solar maximum.” When the Sun is less active, scientists call that “solar minimum.” Does the Sun have a north pole?
Yes! Just like Earth, the Sun has north and south magnetic poles. But every 11 years, the Sun’s poles flip. North becomes south and south becomes north.
Every 11 years, the Sun’s poles flip. North becomes south and south becomes north. What is space weather?
Space weather includes things like solar wind, solar storms, and solar flares. When the Sun is active, these things can have an impact on Earth and in space.
Let’s learn more about space weather and how it affects our planet.
What is solar wind?
The solar wind is a constant wave of particles flowing out into space from the Sun’s surface. It travels deep into space. When the solar wind reaches Earth, its particles interact with Earth’s magnetic field. This causes colorful streams of moving light at Earth’s north and south poles. These are called auroras or the northern and southern lights.
When the solar wind from the Sun reaches Earth, its particles interact with Earth’s magnetic field. This causes colorful streams of moving light at Earth’s north and south poles. What are solar storms and solar flares?
The Sun’s magnetic fields are always moving. They twist and stretch. Sometimes they snap and reconnect. When this happens, it releases a burst of energy. This can cause a solar storm.
Solar storms can include solar flares. A solar flare is a blast of light and energy from the Sun’s surface. They usually erupt near sunspots. Solar flares happen more often during solar maximum and less often during solar minimum.
A solar flare is a blast of light and energy from the Sun’s surface. How does space weather affect Earth?
Earth is protected from most space weather. Our atmosphere and magnetic field act like a shield. But strong solar storms can still cause problems. Areas might lose electricity. Radios might not work. Satellites can be damaged. NASA keeps an eye on space weather. If strong storms are predicted, teams work to protect spacecraft and astronauts in space.
How are we learning more about the Sun?
A space probe is a robot that explores space. They often visit other planets, moons, or asteroids and comets that also orbit the Sun. NASA’s Parker Solar Probe launched to the Sun in 2018. The Parker Solar Probe is on a special mission. It flies very close to the Sun to collect information. This will help scientists learn new things about the Sun and how it affects life on Earth.
Visit these websites to read more about the Sun:
https://science.nasa.gov/sun/facts/ https://spaceplace.nasa.gov/menu/sun/ https://www.nasa.gov/stem-content/our-very-own-star-the-sun/ Read NASA Knows: How Does the Sun Behave? (Grades 5-8).
Explore More for Students Grades K-4
View the full article
-
By NASA
Caption: Illustration of the four PUNCH spacecraft in low Earth orbit. Credit: NASA’s Goddard Space Flight Center Conceptual Image Lab
NASA will hold a media teleconference at 2 p.m. EST on Tuesday, Feb. 4, to share information about the agency’s upcoming PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission, which is targeted to launch no earlier than Thursday, Feb. 27.
The agency’s PUNCH mission is a constellation of four small satellites. When they arrive in low Earth orbit, the satellites will make global, 3D observations of the Sun’s outer atmosphere, the corona, and help NASA learn how the mass and energy there become solar wind. By imaging the Sun’s corona and the solar wind together, scientists hope to better understand the entire inner heliosphere – Sun, solar wind, and Earth – as a single connected system.
Audio of the teleconference will stream live on the agency’s website at:
https://www.nasa.gov/live
Participants include:
Madhulika Guhathakurta, NASA program scientist, NASA Headquarters Nicholeen Viall, PUNCH mission scientist, NASA’s Goddard Space Flight Center Craig DeForest, PUNCH principal investigator, Southwest Research Institute To participate in the media teleconference, media must RSVP no later than 12 p.m. on Feb. 4 to: Abbey Interrante at: abbey.a.interrante@nasa.gov. NASA’s media accreditation policy is available online.
The PUNCH mission will share a ride to space with NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) space telescope on a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California.
The Southwest Research Institute in Boulder, Colorado, leads the PUNCH mission. The mission is managed by the Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington.
To learn more about PUNCH, please visit:
https://nasa.gov/punch
-end-
Karen Fox
Headquarters, Washington
202-358-1600
karen.fox@nasa.gov
Sarah Frazier
Goddard Space Flight Center, Greenbelt, Md.
202-853-7191
sarah.frazier@nasa.gov
View the full article
-
By NASA
Crews conduct a solar array deployment test on the spacecraft of NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) satellites at Astrotech Space Operations located inside Vandenberg Space Force Base in California on Tuesday, Jan. 21, 2025.USSF 30th Space Wing/Antonio Ramos Technicians supporting NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission deployed and tested the spacecraft’s solar arrays at the Astrotech Space Operations processing facility at Vandenberg Space Force Base in California ahead of its launch next month.
The arrays, essential for powering instruments and systems, mark another milestone in preparing PUNCH for its mission to study the Sun’s outer atmosphere as it transitions into the solar wind. Technicians performed the tests in a specialized cleanroom environment to prevent contamination and protect the sensitive equipment.
Comprised of four suitcase-sized satellites working together as a constellation, PUNCH will capture continuous 3D images of the Sun’s corona and the solar wind’s journey into the solar system. Led by the Southwest Research Institute (SwRI) for NASA, the mission aims to deepen our understanding of the Sun and solar wind and how they affect humanity’s technology on Earth and our continued exploration of the solar system.
Successful solar array testing brings the spacecraft another step toward readiness for launch. The agency’s PUNCH mission is targeting liftoff as a rideshare with NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) on a SpaceX Falcon 9 rocket from Vandenberg’s Space Launch Complex 4E no earlier than Thursday, Feb. 27.
Image credit: USSF 30th Space Wing/Antonio Ramos
View the full article
-
By NASA
This image from NASA’s James Webb Space Telescope shows the dwarf galaxy NGC 4449. ESA/Webb, NASA & CSA, A. Adamo (Stockholm University) and the FEAST JWST team President Biden has named 19 researchers who contribute to NASA’s mission as recipients of the Presidential Early Career Award for Scientists and Engineers (PECASE). These recipients are among nearly 400 federally funded researchers receiving the honor.
Established in 1996 by the National Science and Technology Council, the PECASE Award is the highest honor given by the U.S. government to scientists and engineers who are beginning their research careers. The award recognizes recipients’ potential to advance the frontiers of scientific knowledge and their commitment to community service, as demonstrated through professional leadership, education or community outreach.
“I am so impressed with these winners and what they have accomplished,” said Kate Calvin, chief scientist, NASA Headquarters in Washington. “They have made valuable contributions to NASA science and engineering, and I can’t wait to see what they do in the future.”
The following NASA recipients were nominated by the agency:
Natasha Batalha, NASA Ames Research Center, Silicon Valley, California – for transformational scientific research in the development of open-source systems for the modeling of exoplanet atmospheres and observations Elizabeth Blaber, Rensselaer Polytechnic Institute, Troy, New York – for transformative spaceflight and ground-based space biology research James Burns, University of Virginia, Charlottesville – for innovative research at the intersection of metallurgy, solid mechanics and chemistry Egle Cekanaviciute, NASA Ames Research Center – for producing transformational research to enable long-duration human exploration on the Moon and Mars Nacer Chahat, NASA Jet Propulsion Laboratory, Pasadena, California – for leading the innovation of spacecraft antennas that enable NASA deep space and earth science missions Ellyn Enderlin, Boise State University, Idaho – for innovative methods to study glaciers using a wide variety of satellite datasets David Estrada, Boise State University, Idaho – for innovative research in the areas of printed electronics for in space manufacturing and sensors for harsh environments Burcu Gurkan, Case Western Reserve University, Cleveland, Ohio – for transforming contemporary approaches to energy storage and carbon capture to be safer and more economical, for applications in space and on Earth Elliott Hawkes, University of California, Santa Barbara – for highly creative innovations in bio-inspired robotics that advance science and support NASA’s mission John Hwang, University of California, San Diego – for innovative approach to air taxi design and key contributions to the urban air mobility industry James Tuttle Keane, NASA Jet Propulsion Laboratory – for innovative and groundbreaking planetary geophysics research, and renowned planetary science illustrations Kaitlin Kratter, University of Arizona, Tucson – for leadership in research about the formation and evolution of stellar and planetary systems beyond our own Lyndsey McMillon-Brown, NASA Glenn Research Center, Cleveland, Ohio – for leadership in photovoltaic research, development, and demonstrations Debbie Senesky, Stanford University, California – for research that has made it possible to operate sensing and electronic devices in high-temperature and radiation-rich environments Hélène Seroussi, Dartmouth College, Hanover, New Hampshire – for leading the cryosphere science community in new research directions about the role of ocean circulation in the destabilization of major parts of Antarctica’s ice sheets Timothy Smith, NASA Glenn Research Center – for achievements in materials science research, specifically in high temperature alloy innovation Mitchell Spearrin, University of California, Los Angeles – for pioneering scientific and technological advancements in multiple areas critical to NASA’s current and future space missions including rocket propulsion, planetary entry, and sensor systems Michelle Thompson, Purdue University, West Lafayette, Indiana – for research in planetary science and dedication to training the next generation of STEM leaders Mary Beth Wilhelm, NASA Ames Research Center – for achievements in science, technology, and community outreach through her work in the fields of space science and astrobiology The PECASE awards were created to highlight the importance of science and technology for America’s future. These early career awards foster innovative developments in science and technology, increase awareness of careers in science and engineering, provide recognition to the scientific missions of participating agencies, and enhance connections between research and challenges facing the nation. For a complete list of award winners, visit:
https://www.whitehouse.gov/ostp/news-updates/2025/01/14/president-biden-honors-nearly-400-federally-funded-early-career-scientists
View the full article
-
By NASA
3 Min Read NASA Scientists Find New Human-Caused Shifts in Global Water Cycle
Cracked mud and salt on the valley floor in Death Valley National Park in California can become a reflective pool after rains. (File photo) Credits: NPS/Kurt Moses In a recently published paper, NASA scientists use nearly 20 years of observations to show that the global water cycle is shifting in unprecedented ways. The majority of those shifts are driven by activities such as agriculture and could have impacts on ecosystems and water management, especially in certain regions.
“We established with data assimilation that human intervention in the global water cycle is more significant than we thought,” said Sujay Kumar, a research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and a co-author of the paper published in the Proceedings of the National Academy of Sciences.
The shifts have implications for people all over the world. Water management practices, such as designing infrastructure for floods or developing drought indicators for early warning systems, are often based on assumptions that the water cycle fluctuates only within a certain range, said Wanshu Nie, a research scientist at NASA Goddard and lead author of the paper.
“This may no longer hold true for some regions,” Nie said. “We hope that this research will serve as a guide map for improving how we assess water resources variability and plan for sustainable resource management, especially in areas where these changes are most significant.”
One example of the human impacts on the water cycle is in North China, which is experiencing an ongoing drought. But vegetation in many areas continues to thrive, partially because producers continue to irrigate their land by pumping more water from groundwater storage, Kumar said. Such interrelated human interventions often lead to complex effects on other water cycle variables, such as evapotranspiration and runoff.
Nie and her colleagues focused on three different kinds of shifts or changes in the cycle: first, a trend, such as a decrease in water in a groundwater reservoir; second, a shift in seasonality, like the typical growing season starting earlier in the year, or an earlier snowmelt; and third a change in extreme events, like “100-year floods” happening more frequently.
The scientists gathered remote sensing data from 2003 to 2020 from several different NASA satellite sources: the Global Precipitation Measurement mission satellite for precipitation data, a soil moisture dataset from the European Space Agency’s Climate Change Initiative, and the Gravity Recovery and Climate Experiment satellites for terrestrial water storage data. They also used products from the Moderate Resolution Imaging Spectroradiometer satellite instrument to provide information on vegetation health.
“This paper combines several years of our team’s effort in developing capabilities on satellite data analysis, allowing us to precisely simulate continental water fluxes and storages across the planet,” said Augusto Getirana, a research scientist at NASA Goddard and a co-author of the paper.
The study results suggest that Earth system models used to simulate the future global water cycle should evolve to integrate the ongoing effects of human activities. With more data and improved models, producers and water resource managers could understand and effectively plan for what the “new normal” of their local water situation looks like, Nie said.
By Erica McNamee
NASA’s Goddard Space Flight Center, Greenbelt, Maryland
Share
Details
Last Updated Jan 16, 2025 EditorKate D. RamsayerContactKate D. Ramsayerkate.d.ramsayer@nasa.gov Related Terms
Earth Global Precipitation Measurement (GPM) Goddard Space Flight Center Moderate Resolution Imaging Spectroradiometer (MODIS) Water & Energy Cycle Explore More
4 min read NASA’s Global Precipitation Measurement Mission: 10 years, 10 stories
From peering into hurricanes to tracking El Niño-related floods and droughts to aiding in disaster…
Article 11 months ago 4 min read NASA Satellites Find Snow Didn’t Offset Southwest US Groundwater Loss
Article 7 months ago 4 min read NASA Satellites Reveal Abrupt Drop in Global Freshwater Levels
Earth’s total amount of freshwater dropped abruptly starting in May 2014 and has remained low…
Article 2 months ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.