Jump to content

HST Reveals the Central Region of an Active Galaxy


HubbleSite

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Figure 1. An artist’s concept of the Van Allen belts with a cutaway section of the giant donuts of radiation that surround Earth. Image Credit: NASA Goddard Space Flight Center/Scientific Visualization Studio A new instrument is using advanced detection techniques and leveraging an orbit with specific characteristics to increase our understanding of the Van Allen belts—regions surrounding Earth that contain energetic particles that can endanger both robotic and human space missions. Recently, the instrument provided a unique view of changes to this region that were brought on by an intense magnetic storm in May 2024.
      The discovery of the Van Allen radiation belts by the U.S. Explorer 1 mission in 1958 marked a prominent milestone in space physics and demonstrated that Earth’s magnetosphere efficiently accelerates and traps energetic particles. The inner belt contains protons in the MeV (million electric volt) to GeV (109 electric volt) range, and even higher concentrations of energetic electrons of 100s of keV (1000 electric volt) to MeV are found in both the inner belt and the outer belt.
      The energetic electrons in these belts—also referred to as “killer electrons”—can have detrimental effects on spacecraft subsystems and are harmful to astronauts performing extravehicular activities. Understanding the source, loss, and varying concentrations of these electrons has been a longstanding research objective. High-energy resolution and clean measurements of these energetic electrons in space are required to further our understanding of their properties and enable more reliable prediction of their intensity.
      Overcoming the challenges of measuring relativistic electrons in the inner belt
      Measuring energetic electrons cleanly and accurately has been a challenge, especially in the inner belt, where MeV to GeV energy protons also exist. NASA’s Van Allen Probes, which operated from 2012 to 2019 in low inclination, geo-transfer-like orbits, showed that instruments traversing the heart of the inner radiation belt are subject to penetration by the highly energetic protons located in that region. The Relativistic Electron Proton Telescope (REPT) and the Magnetic Electron and Ion Spectrometer (MagEIS) instruments onboard the Van Allen Probes were heavily shielded but were still subject to inner-belt proton contamination.
      To attempt to minimize these negative effects, a University of Colorado Boulder team led by Dr. Xinlin Li, designed the Relativistic Electron Proton Telescope integrated little experiment (REPTile)—a simplified and miniaturized version of REPT—to fly onboard the Colorado Student Space Weather Experiment (CSSWE). An effort supported by the National Science Foundation, the 3-Unit CSSWE CubeSat operated in a highly inclined low Earth orbit (LEO) from 2012 to 2014. In this highly inclined orbit, the spacecraft and the instruments it carried were only exposed to the inner-belt protons in the South Atlantic Anomaly (SAA) region where the Earth’s magnetic field is weaker, which greatly reduced the time that protons impacted the measurement of electrons.
      REPTile’s success motivated a team, also led by Dr. Xinlin Li, to design REPTile-2—an advanced version of REPTile—to be hosted on the Colorado Inner Radiation Belt Experiment (CIRBE) mission. Like CSSWE, CIRBE operates in a highly inclined low-Earth orbit to ensure the exposure to damaging inner-belt protons is minimized. The team based the REPTile-2 design on REPTile but incorporated two additional technologies—guard rings and Pulse Height Analysis—to enable clean, high-energy-resolution measurements of energetic electrons, especially in the inner belt.
      Figure 2:  PI observing two engineers testing the interface between the CIRBE bus and REPTile-2 on September 29, 2021. Image Credit: Xinlin Li, University of Colorado Boulder As shown on the left in Figure 3, the field of view (FOV) of REPTile-2 is 51o. Electrons and protons enter the FOV and are measured when they reach a stack of silicon detectors where they deposit their energies. However, very energetic protons (energy greater than 60 MeV) could penetrate through the instrument’s tungsten and aluminum shielding and masquerade as valid particles, thus contaminating the intended measurements. To mitigate this contamination, the team designed guard rings that surround each detector. These guard rings are electronically separated from the inner active area of each detector and are connected by a separate electric channel. When the guard rings are triggered (i.e., hit by particles coming outside of the FOV), the coincident measurements are considered invalid and are discarded. This anti-coincidence technique enables cleaner measurements of particles coming through the FOV.
      Figure 3. Left (adapted from Figure 1 of Khoo et al., 2022): Illustration of REPTile-2 front end with key features labeled; Right: REPTile-2 front end integrated with electronic boards and structures, a computer-aided design (CAD) model, and a photo of integrated REPTile-2. Image Credit: Xinlin Li, University of Colorado Boulder To achieve high energy resolution, the team also applied full Pulse Height Analysis (PHA) on REPTile-2. In PHA, the magnitude of measured charge in the detector is directly proportional to the energy deposited from the incident electrons. Unlike REPTile, which employed a simpler energy threshold discrimination method yielding three channels for the electrons, REPTile-2 offers enhanced precision with 60 energy channels for electron energies ranging from 0.25 – 6 MeV. The REPT instrument onboard the Van Allen Probes also employed PHA but while REPT worked very well in the outer belt, yielding fine energy resolution, it did not function as well in the inner belt since the instrument was fully exposed to penetrating energetic protons because it did not have the guard rings implemented.
      Figure 4: The CIRBE team after a successful “plugs-out” test of the CIRBE spacecraft on July 21, 2022. During this test the CIRBE spacecraft successfully received commands from ground stations and completed various performance tests, including data transmission back to ground stations at LASP. Image Credit: Xinlin Li, University of Colorado Boulder CIRBE and REPTile-2 Results
      CIRBE’s launch, secured through the NASA CubeSat Launch Initiative (CSLI), took place aboard SpaceX’s Falcon 9 rocket as part of the Transporter-7 mission on April 15, 2023. REPTile-2, activated on April 19, 2023, has been performing well, delivering valuable data about Earth’s radiation belt electrons. Many features of the energetic electrons in the Van Allen belts have been revealed for the first time, thanks to the high-resolution energy and time measurements REPTile-2 has provided.
      Figure 5 shows a sample of CIRBE/REPTile-2 measurements from April 2024, and illustrates the intricate drift echoes or “zebra stripes” of energetic electrons, swirling around Earth in distinct bunches. These observations span a vast range across the inner and outer belts, encompassing a wide spectrum of energies and electron fluxes extending over six orders of magnitude. By leveraging advanced guard rings, Pulse Height Analysis (PHA), and a highly inclined LEO orbit, REPTile-2 is delivering unprecedented observations of radiation belt electrons.
      Figure 5: Color-coded electron fluxes detrended between REPTile-2 measurements for a pass over the South Atlantic Anomaly region on April 24, 2023, and their average, i.e., the smoothed electron fluxes using a moving average window of ±19% in energy; Black curves plotted on top of the color-coded electron fluxes are contours of electron drift period in hr. The second horizontal-axis, L, represents the magnetic field line, which CIRBE crosses. The two radiation belts and a slot region in between are indicated by the red lines and arrow, respectively. Image Credit: Xinlin Li, University of Colorado Boulder In fact, the team recently announced that measurements from CIRBE/REPTile-2 have revealed a new temporary third radiation belt composed of electrons and sandwiched between the two permanent belts. This belt formed during the magnetic storm in May 2024, which was the largest in two decades. While such temporary belts have been seen after big storms previously, the data from CIRBE/REPTile-2 are providing a new viewpoint with higher energy resolution data than before. Scientists are currently studying the data to better understand the belt and how long it might stick around — which could be many months.
      PROJECT LEAD
      Dr. Xinlin Li, University of Colorado Laboratory for Atmospheric and Space Physics and Department of Aerospace Engineering Sciences.
      SPONSORING ORGANIZATIONS
      Heliophysics Flight Opportunities for Research & Technology (H-FORT) program, National Science Foundation
      Share








      Details
      Last Updated Sep 17, 2024 Related Terms
      Heliophysics Heliophysics Division Science-enabling Technology Explore More
      5 min read Voyager 1 Team Accomplishes Tricky Thruster Swap


      Article


      7 days ago
      2 min read Leveraging Teacher Leaders to Share the Joy of NASA Heliophysics


      Article


      2 weeks ago
      9 min read Carbon Nanotubes and the Search for Life on Other Planets


      Article


      2 weeks ago
      View the full article
    • By NASA
      5 Min Read NASA’s Webb Peers into the Extreme Outer Galaxy
      This image shows a portion of the star-forming region, known as Digel Cloud 2S (full image below). Credits:
      NASA, ESA, CSA, STScI, M. Ressler (JPL) Astronomers have directed NASA’s James Webb Space Telescope to examine the outskirts of our Milky Way galaxy. Scientists call this region the Extreme Outer Galaxy due to its location more than 58,000 light-years away from the Galactic Center. (For comparison, Earth is approximately 26,000 light-years from the center.)
      A team of scientists used Webb’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) to image select regions within two molecular clouds known as Digel Clouds 1 and 2. With its high degree of sensitivity and sharp resolution, the Webb data resolved these areas, which are hosts to star clusters undergoing bursts of star formation, in unprecedented detail. Details of this data include components of the clusters such as very young (Class 0) protostars, outflows and jets, and distinctive nebular structures.
      These Webb observations, which came from telescope time allocated to Mike Ressler of NASA’s Jet Propulsion Laboratory in Southern California, are enabling scientists to study star formation in the outer Milky Way in the same depth of detail as observations of star formation in our own solar neighborhood.
      “In the past, we knew about these star forming regions but were not able to delve into their properties,” said Natsuko Izumi of Gifu University and the National Astronomical Observatory of Japan, lead author of the study. “The Webb data builds upon what we have incrementally gathered over the years from prior observations with different telescopes and observatories. We can get very powerful and impressive images of these clouds with Webb. In the case of Digel Cloud 2, I did not expect to see such active star formation and spectacular jets.”
      Image A: Extreme Outer Galaxy (NIRCam and MIRI)
      Scientists used NASA’s James Webb Space Telescope to examine select star-forming areas in the Extreme Outer Galaxy in near- and mid-infrared light. Within this star-forming region, known as Digel Cloud 2S, the telescope observed young, newly formed stars and their extended jets of material. This Webb image also shows a dense sea of background galaxies and red nebulous structures within the region. In this image, colors were assigned to different filters from Webb’s MIRI and NIRCam: red (F1280W, F770W, F444W), green (F356W, F200W), and blue (F150W; F115W). NASA, ESA, CSA, STScI, M. Ressler (JPL) Stars in the Making
      Although the Digel Clouds are within our galaxy, they are relatively poor in elements heavier than hydrogen and helium. This composition makes them similar to dwarf galaxies and our own Milky Way in its early history. Therefore, the team took the opportunity to use Webb to capture the activity occurring in four clusters of young stars within Digel Clouds 1 and 2: 1A, 1B, 2N, and 2S.
      For Cloud 2S, Webb captured the main cluster containing young, newly formed stars. This dense area is quite active as several stars are emitting extended jets of material along their poles. Additionally, while scientists previously suspected a sub-cluster might be present within the cloud, Webb’s imaging capabilities confirmed its existence for the first time. 
      “We know from studying other nearby star-forming regions that as stars form during their early life phase, they start emitting jets of material at their poles,” said Ressler, second author of the study and principal investigator of the observing program. “What was fascinating and astounding to me from the Webb data is that there are multiple jets shooting out in all different directions from this cluster of stars. It’s a little bit like a firecracker, where you see things shooting this way and that.”
      The Saga of Stars
      The Webb imagery skims the surface of the Extreme Outer Galaxy and the Digel Clouds, and is just a starting point for the team. They intend to revisit this outpost in the Milky Way to find answers to a variety of current mysteries, including the relative abundance of stars of various masses within Extreme Outer Galaxy star clusters. This measurement can help astronomers understand how a particular environment can influence different types of stars during their formation.
      “I’m interested in continuing to study how star formation is occurring in these regions. By combining data from different observatories and telescopes, we can examine each stage in the evolution process,” said Izumi. “We also plan to investigate circumstellar disks within the Extreme Outer Galaxy. We still don’t know why their lifetimes are shorter than in star-forming regions much closer to us. And of course, I’d like to understand the kinematics of the jets we detected in Cloud 2S.”
      Though the story of star formation is complex and some chapters are still shrouded in mystery, Webb is gathering clues and helping astronomers unravel this intricate tale.
      These findings have been published in the Astronomical Journal.
      The observations were taken as part of Guaranteed Time Observation program 1237.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the Astronomical Journal.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu, Abigail Major – amajor@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      Animation Video: “Exploring Star and Planet Formation”
      Interactive: Explore the jets emitted by young stars in multiple wavelengths
      Video: Did You Know: Images of the Milky Way
      Protostars
      Star Lifecycle
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Stars



      Stars Stories



      Universe


      Share








      Details
      Last Updated Sep 11, 2024 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Goddard Space Flight Center James Webb Space Telescope (JWST) Protostars Science & Research Star Clusters Star-forming Nebulae Stars The Milky Way The Universe View the full article
    • By European Space Agency
      Image: Digel Cloud 2S View the full article
    • By European Space Agency
      The Global Methane Budget 2024 paints a troubling picture of the current state of global methane emissions. The new report, which uses data from the Copernicus Sentinel-5P satellite, reveals that human activities are now responsible for at least two-thirds of global methane emissions.
      This marks a significant increase in human-produced methane sources over the past two decades, with emissions rising by 20%, with the fastest rise occurring over the last five years.
      View the full article
    • By NASA
      The dome-shaped Brandburg Massif, near the Atlantic coast of central Namibia, containing Brandberg Mountain, the African nation’s highest peak and ancient rock paintings going back at least 2,000 years, is pictured from the International Space Station as it orbited 261 miles above.
      Image Credit: NASA
      View the full article
  • Check out these Videos

×
×
  • Create New...