Jump to content

Persevering Through Science


Recommended Posts

  • Publishers
Posted

3 min read

Persevering Through Science

A round, golden circle resembling a metal doughnut surrounds a dark tan circle, at the center of which appear to be multiple round layers in various shades of gold to tan, resembling stacked, see-through layers of mica.
NASA’s Mars Perseverance rover acquired this image of its 26th collected rock sample, “Silver Mountain,” using its onboard Sample Caching System Camera (CacheCam), located inside the rover underbelly. It looks down into the top of a sample tube to take close-up pictures of the sampled material and the tube as it’s prepared for sealing and storage. This image was acquired on Jan. 28, 2025 — sol 1401, or Martian day 1,401 of the Mars 2020 mission — at the local mean solar time of 18:49:01.
NASA/JPL-Caltech

The Mars 2020 Perseverance rover continues to live up to its name, pushing forward in search of ancient Martian secrets. Following a brief period of system verification and remote testing, our operations team is back at full strength, and Perseverance has been hard at work uncovering new geological insights.

We began our latest campaign at “Mill Brook,” a site surrounded by dusty, fine-grained paver stones. Here, we conducted an abrasion experiment at “Steve’s Trail,” allowing our remote sensing instruments to capture a before-and-after analysis of the rock surface. SuperCam (SCAM) used its LIBS and VISIR systems to investigate “Bad Weather Pond,” while Mastcam-Z (ZCAM) imaged the entire workspace. These observations provide invaluable data on the composition, texture, and potential alteration of these rocks.

After wrapping up at Mill Brook — including a ZCAM multispectral scan of “Berry Hill” — Perseverance took a 140-meter drive (about 459 feet) to “Blue Hill” at “Shallow Bay,” a site of immense scientific interest. The rocks here are rich in low-calcium pyroxene (LCP), making them one of the most intriguing sample targets of the mission so far.

The significance of Blue Hill extends beyond just this one location. The pyroxene-rich nature of the site suggests a potential link to a much larger rock unit visible in orbital HiRISE images. Given that this may be the only exposure of these materials within our planned traverse, our science team prioritized sampling this Noachian-aged outcrop, a rare window into Mars’ deep past.

And now, we are thrilled to announce:

Perseverance has successfully cored and sealed a 2.9-centimeter (1.1-inch) rock sample from Blue Hill, officially named “Silver Mountain.” This marks our first Noachian-aged outcrop sample, an important milestone in our mission to uncover the geological history of Jezero Crater. Since Shallow Bay-Shoal Brook is the only location along our planned route where this regional low-calcium pyroxene unit was identified from orbit, this sample is a one-of-a-kind treasure for future Mars Sample Return analyses.

As we enter the Year of the Snake, it seems fitting that serpentine-bearing rocks have slithered into our focus! While Blue Hill remains a top priority, the tactical team has been highly responsive to the science team’s overwhelming interest in the nearby serpentine-bearing outcrops. These rocks, which may reveal critical clues about past water activity and potential habitability, are now part of our exploration strategy.

Between our Noachian-aged pyroxene sample and the newfound focus on serpentine-bearing rocks, our journey through Jezero Crater has never been more exciting. Each step — each scan, each drive, each core sample — brings us closer to understanding Mars’ complex past.

As Perseverance continues to, well, persevere, and as we embrace the Year of the Snake, we can’t help but marvel at the poetic alignment of science and tradition. Here’s to a year of wisdom, resilience, and groundbreaking discoveries — both on Earth and 225 million kilometers (140 million miles) away!

Stay tuned as we unravel the next chapter in Mars exploration!

Written by Nicolas Randazzo, Postdoctoral Scientist at University of Alberta

Share

Details

Last Updated
Feb 04, 2025

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA has awarded Dynamic Aviation Group Inc. of Bridgewater, Virginia, the Commercial Aviation Services contract to support the agency’s Airborne Science Program. The program provides aircraft and technology to further science and advance the use of Earth observing satellite data, making NASA data about our home planet and innovations accessible to all.
      This is an indefinite-delivery/indefinite-quantity firm-fixed-price contract with a maximum potential value of $13.5 million. The period of performance began Friday, Jan. 31, and continues through Jan. 30, 2030. 
      Under this contract, the company will provide ground and flight crews and services using modified commercial aircraft, including a Beechcraft King Air B200 and Beechcraft King Air A90. Work will include mechanical and electrical engineering services for instrument integration and de-integration, flight planning and real-time tracking, project execution, as well as technical feasibility assessments and cost estimation. Aircraft modifications may include instrumented nosecones, viewing ports, inlets, computing systems, and satellite communications capabilities. 
      This work is essential for NASA to conduct airborne science missions, develop and validate earth system models, and support satellite payload calibration. NASA’s Ames Research Center in California’s Silicon Valley will administer the agency-wide contract on behalf of the Airborne Science Program in the Earth Science Division at NASA Headquarters in Washington.
      To learn more about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Rachel Hoover
      Ames Research Center, Silicon Valley, Calif.
      650-604-4789
      rachel.hoover@nasa.gov

      View the full article
    • By NASA
      Seeds survive space
      A close-up view of the Materials International Space Station Experiment hardware housing materials for exposure to space.NASA Researchers found that plant seeds exposed to space germinated at the same rate as those kept on the ground. This finding shows that plant seeds can remain viable during long-term space travel and plants could be used for food and other uses on future missions.

      Materials International Space Station Experiment-14 exposed a variety of materials to space, including 11 types of plant seeds. The work also evaluated the performance of a new sample containment canister as a method of exposing biological samples to space while protecting their vigor.

      Examining mechanisms of immune issues in space
      NASA astronaut Josh Cassada stows samples from blood collection activities inside an International Space Station science freezer.NASA Using genetic analyses, researchers identified molecular mechanisms that cause changes in mitochondrial and immune system function seen during spaceflight. The findings provide insight into how the human body adapts in space and could guide countermeasures for protecting immune function on future missions.

      International Space Station Medical Monitoring collects a variety of health data from crew members before, after, and at regular intervals during spaceflight. Evaluations fall into broad categories of medical, occupational, physical fitness, nutrition, and psychological or behavioral and include blood tests. Mitochondria are cell organelles that produce energy.

      Reducing vision changes in space
      JAXA (Japan Aerospace Exploration Agency) astronaut Norishige Kanai installs the Mouse Habitat Unit on the space station.JAXA/Norishige Kanai Microgravity can cause changes in eye structure and function. Researchers found that artificial gravity may reduce these changes and could serve as a countermeasure to protect the vision of crew members on future missions.

      Previous studies provide evidence that artificial gravity may protect against or mitigate negative effects of microgravity. An investigation from JAXA (Japan Aerospace Exploration Agency) in collaboration with NASA’s Human Research and Space Biology Programs, Mouse Habitat Unit-8 looked at the long-term effects of spaceflight on gene expression patterns in mammals. More research is needed to identify the effects of other spaceflight stressors and determine what level and duration of gravitational force is needed to prevent or reduce damage to the retina or optic nerve.
      View the full article
    • By USH
      A summer barbecue transformed into a nightmare when lightning split the sky above Somerset, England. Peter Williamson dashed across his rain-soaked lawn to rescue his terrified dog, unaware that his next step would carry him beyond the boundaries of our world. 
      His family watched in horror as a blinding flash illuminated his silhouette against the stormy sky. When their vision cleared, Peter had evaporated into thin air. 

      The police launched a search, but found no footprints, no scorch marks, and no explanation for how a man could disappear from a walled garden. Sixteen witnesses swore they watched him vanish in plain sight. 
      Three days passed before Peter materialized in his backyard, wearing unfamiliar clothes and carrying items that defied explanation. His memories painted a picture of a hospital that both existed and didn't exist, where reality shimmered like heat waves rising from summer pavement. 
      The investigation into his disappearance uncovered something extraordinary: evidence suggesting Peter had slipped through a crack between parallel universes. 
      A "crack between parallel universes" is a metaphorical concept in physics, often used to describe a hypothetical point or region where two separate parallel universes could potentially interact or intersect with each other, allowing for potential travel or communication between them. 
      If such a "crack" existed, it would likely demand extraordinarily extreme conditions, exactly the kind Peter Williamson encountered during his disappearance. 
      His impossible story forces us to question everything we think we know about the nature of reality.
        View the full article
    • By NASA
      As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Intuitive Machines’ second delivery to the Moon will carry NASA technology demonstrations and science investigations on their Nova-C class lunar lander. Credit: Intuitive Machines NASA will host a media teleconference at 1 p.m. EST Friday, Feb. 7, to discuss the agency’s science and technology flying aboard Intuitive Machines’ second flight to the Moon. The mission is part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term lunar presence. 

      Audio of the call will stream on the agency’s website at:
      https://www.nasa.gov/live
      Briefing participants include:
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters Niki Werkheiser, director, technology maturation, Space Technology Mission Directorate, NASA Headquarters Trent Martin, senior vice president, space systems, Intuitive Machines To participate by telephone, media must RSVP no later than two hours before the briefing to: ksc-newsroom@mail.nasa.gov. NASA’s media accreditation policy is available online.

      Intuitive Machines’ lunar lander, Athena, will launch on a SpaceX Falcon 9 rocket from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The four-day launch window opens no earlier than Wednesday, Feb. 26.

      Among the items on Intuitive Machines’ lander, the IM-2 mission will be one of the first on site, or in-situ, demonstrations of resource utilization on the Moon. A drill and mass spectrometer will measure the potential presence of volatiles or gases from lunar soil in Mons Mouton, a lunar plateau near the Moon’s South Pole. In addition, a passive Laser Retroreflector Array on the top deck of the lander will bounce laser light back at any orbiting or incoming spacecraft to give future spacecraft a permanent reference point on the lunar surface. Other technology instruments on this delivery will demonstrate a robust surface communications system and deploy a propulsive drone that can hop across the lunar surface.

      Launching as a rideshare with the IM-2 delivery, NASA’s Lunar Trailblazer spacecraft also will begin its journey to lunar orbit, where it will map the distribution of the different forms of water on the Moon.

      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA is one of many customers for these flights.

      For updates, follow on:
      https://blogs.nasa.gov/artemis
      -end-
      Alise Fisher / Jasmine Hopkins
      Headquarters, Washington
      202-358-2546
      alise.m.fisher@nasa.gov / jasmine.s.hopkins@nasa.gov

      Natalia Riusech / Nilufar Ramji
      Johnson Space Center, Houston
      281-483-5111
      nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov

      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-867-2468
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Jan 31, 2025 LocationNASA Headquarters Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Missions Science Mission Directorate Space Technology Mission Directorate View the full article
    • By European Space Agency
      Video: 00:06:40 A group of volunteers is spending two months lying in bed—with their feet up and one shoulder always touching the mattress—even while eating, showering, and using the toilet. But why? This extreme bedrest study is helping scientists understand how space travel affects the human body and how to keep astronauts healthy on long missions.
      Microgravity causes muscle and bone loss, fluid shifts, and other physiological changes similar to those experienced by bedridden patients on Earth. By studying volunteers here on Earth, researchers can develop better countermeasures for astronauts and even improve treatments for medical conditions like osteoporosis.
      In this study, participants are divided into three groups: one stays in bed with no exercise, another cycles in bed to mimic astronaut workouts, and a third cycles while being spun in a centrifuge to simulate artificial gravity. Scientists hope artificial gravity could become a key tool in protecting astronauts during deep-space missions.
      View the full article
  • Check out these Videos

×
×
  • Create New...