Jump to content

Recommended Posts

  • Publishers
Posted

3 min read

Sols 4441-4442: Winter is Coming

A grayscale photograph of the Martian surface from the Curiosity rover captures light gray, very uneven terrain in front of the rover, with many angular, lighter-toned, medium-sized rocks protruding from the smooth soil. A triangular rock lying on the ground directly in front of the rover is lightest, almost white; its side is covered in small black spots, looking like bleached, pockmarked driftwood. The bottom of the frame shows part of the rover, running from the middle left to the lower right corner of the image, including part of its robotic arm which carries a nameplate imprinted with “Curiosity” outlined in all capital letters, and to the right of that a line drawing of the rover.
NASA’s Mars rover Curiosity acquired this image of its workspace, which includes some polygonal fracture features just to the left of the top center of the image, using its Left Navigation Camera on sol 4439, or Martian day 4,439 of the Mars Science Laboratory mission, on Jan. 31, 2025, at 05:43:05 UTC.
NASA/JPL-Caltech

Earth planning date: Friday, Jan. 31, 2025

Here in Earth’s northern hemisphere, the days are slowly getting longer, bringing with them the promise of an end to winter. While we are anticipating the return of warmer temperatures, just over 100 million kilometers (more than 62 million miles) away, Curiosity is starting to feel the bite of the colder season.

One of the quirks of Mars’ orbital configuration is that aphelion (when Mars is farthest from the Sun) occurs about a month and a half before the southern winter solstice. This means that winters in the southern hemisphere (where Curiosity is located) are both longer and colder than those in the northern hemisphere. Consequently, we need to spend more of our power on keeping the rover warm, limiting the time that can be spent doing science. 

Today’s plan was fairly constrained by the available power, so our various instrument and science teams had to carefully coordinate their requests to ensure that we stay within the power limits that have been budgeted out over the next several plans. Our team is never one to back down from a challenge, so this plan squeezes as much science as possible out of every watt-hour of power we were given.

Our drive from Wednesday’s plan completed successfully (quite an accomplishment in the current terrain!). One of our wheels ended up perched a few centimetres up on a rock, so we aren’t able to use APXS or DRT today, but we were still able to unstow the arm to take some MAHLI images. 

This plan kicks off with a pair of ChemCam and Mastcam coordinated activities. The first of these two focuses on some interesting polygonal fractures that we ended up parked in front of (see the image above). ChemCam will use its LIBS laser on these fractures before they are imaged by Mastcam. ChemCam will then use its RMI camera to take a mosaic of some features on the crater floor way off in the distance, which Mastcam will also image. Mastcam then goes it alone, with images of “Vivian Creek” (some sedimentary layers in today’s contact science target), “Dawn Mine” (a potential meteorite), and a trough off of the rover’s right side. The Environmental Science (ENV) team will continue their monitoring of the environment with a Mastcam tau to measure dust in the atmosphere as well as Navcam cloud and dust devil movies. After a short nap, the arm is unstopped to take a number of MAHLI images of “Coldwater Canyon,” over a range of distances between 5 and 25 centimeters away (about 2-10 inches).

The second sol of this plan is largely consumed by ENV activities, including another tau and a Navcam line-of-sight observation to monitor dust. A big chunk of this sol’s plan is taken up by ChemCam passive observations (not using the LIBS laser) of the atmosphere. This “passive sky” observation allows us to measure atmospheric aerosol properties and the amount of oxygen and water in the air. Of course, ENV couldn’t have all the fun, so this sol also contains a typical ChemCam LIBS observation of “Big Dalton” with a Mastcam image afterward. After stowing the arm, we will drive off from our current location.

Right before handing off to Monday’s plan, we wrap up with our typical early-morning ENV weekend science time, which includes more tau and line-of-sight dust observations and several Navcam cloud movies. RAD, REMS, and DAN also continue their monitoring of the environment throughout this plan.

Written by Conor Hayes, Graduate Student at York University

Share

Details

Last Updated
Feb 04, 2025

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Sols 4475-4476: Even the Best-Laid Plans
      NASA’s Mars rover Curiosity acquired this image of “Gould Mesa,” named for a hill near NASA’s Jet Propulsion Laboratory in Southern California, using its Right Navigation Camera on March 6, 2025 — sol 4472, or Martian day 4,472 of the Mars Science Laboratory mission — at 01:37:17 UTC. NASA/JPL-Caltech Written by Deborah Padgett, OPGS Task Lead at NASA’s Jet Propulsion Laboratory
      Earth planning date: Friday, March 7, 2025
      In Curiosity’s last plan, the team decided to drive toward a very interesting nodular rock. The rover team hoped to do a detailed study of its surface texture over the weekend. However, Curiosity did not receive its expected Friday morning downlink of images taken after its drive. The MSL team did receive a tiny bit of data confirming that Curiosity’s drive finished as expected. Unfortunately, without images to determine exactly where Curiosity was located relative to its intended destination, the team was unable to do any instrument pointing at nearby objects, known as “targeted” observations. However, the rover team showed its resilience by filling the weekend plan with a full slate of fascinating remote observations of the terrain and sky around Curiosity’s current perch, high in the canyons of Mount Sharp. Our science and instrument teams always keep a list of backup observations close at hand — frequently those taking too much time to fit in a typical sol plan — in case they get an unexpected opportunity to use them!
           On sol 4475, Curiosity will start its first science block midday with two back-to-back dust-devil surveys with Navcam. These searches for Martian whirlwinds will be followed by a measurement of atmospheric dust with Mastcam. Mastcam will then do its first large panorama image of the plan, an 11×3 mosaic starboard of the rover to document bedrock and regolith in an area with a dark band of material seen from orbit. This long observation will be followed by an AEGIS activity, using Navcam to find targets for ChemCam’s laser spectrograph. Curiosity will then repeat its post-drive imaging at high quality, hopefully to be received at JPL before Monday’s planning day. In the evening, APXS will do atmospheric composition studies for several hours. 
      The next day will be a “soliday,” without any observations. Early in the morning of sol 4476, Mastcam will take its second large panorama, which will be a fantastic 37×4 mosaic of sunrise on the slopes of Gould Mesa (see image).  In the afternoon, there will be a Mastcam dust measurement, ChemCam calibration observation, ChemCam passive sky, and two more dust-devil surveys. The next morning, there will be a set of Navcam cloud movies, a dust measurement, and sky phase function observations to support the Mars aphelion cloud-belt campaign. On sol 4477, we will use the post-drive imaging taken over the weekend to plan contact science, then drive away from this location on sol 4478, continuing Curiosity’s journey toward the mysterious boxwork features to the west.
      Share








      Details
      Last Updated Mar 11, 2025 Related Terms
      Blogs Explore More
      2 min read Sealing the Deal


      Article


      5 days ago
      5 min read Sols 4473-4474: So Many Rocks, So Many Textures!


      Article


      5 days ago
      2 min read Sols 4471-4472: Marching Through the Canyon


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 5 min read
      Sols 4473-4474: So Many Rocks, So Many Textures!
      NASA’s Mars rover Curiosity acquired this image using its Chemistry & Camera (ChemCam) of a boulder about 40 meters (about 131 feet) away from the rover at the time. Curiosity acquired the image, showing the variety of structures and textures around the rover, on March 5, 2025 — sol 4471, or Martian day 4,471 of the Mars Science Laboratory mission — at 01:47:03 UTC. NASA/JPL-Caltech/LANL Written by Susanne Schwenzer, Planetary Geologist at The Open University
      Earth planning date: Wednesday, March 5, 2025
      The Martian landscape never ceases to amaze me, there is so much variation in texture and color! As a mineralogist, I marvel at them, but my colleagues trained in sedimentology regularly teach me how to see even more than the beauty of them: they can discern whether the materials that make up a rock were transported and laid down by the action of water or wind. The image above shows a rather unusual texture alongside more normal-looking laminated rocks. Just compare the small, brighter block in the foreground with the darker bigger rock in the center of the image. How should we interpret it? Well, that jury is still out. Are they sedimentary textures formed when the rock first was laid down, or shortly after, or are they textures that formed much later when water entered the rock and formed new minerals in the already existing rock? The latter would be more my area of research, and they are often called concretions. And I vividly remember the first concretions a rover ever found, the “blueberries.” Curiosity, of course, found many concretions, too. There is an interesting comparison between rocks that the Mars Exploration rover Opportunity found, and the one that Curiosity found very early in the mission, back at Yellowknife Bay. We have seen many more since, and the above might be another example.
      The landscape directly around the rover today also has some interesting textures and, most important, some more regular-looking bedrock targets. Bedrock is what the team perceives to be the rocks that make up the part of the hill we are driving through. The dark blocks, like the one above, that are also strewn occasionally in the path of the rover are called float rocks, and we always look higher up into the hills to find out where they might have come from. As interesting as all those blocks and boulders are, they pose a huge challenge for the rover drivers. Today, they had managed to get us all the way to the intended stopping point, which in itself is a huge achievement. A mixture of large rocks and sand is just not conducive to any form of travel, and I always wonder how tiring it would be to just walk through the area. But we made it to the intended stopping point, driving just under 20 meters (about 65 feet), as intended. Unfortunately though, one of the rover’s wheels was perched on a rock in ways that posed a risk of dropping off that rock during an arm move. So, as is usual in those cases, we accept that contact science is not possible. The risk would just be too great that the rover moves just at the wrong moment and the arm bumps into the rock that an instrument is investigating at that moment. So, safety first, we decided to keep the arm tucked in and focus on remote science.
      The team quickly pivoted to add some remote science to the already existing observations. As you might imagine in a terrain as interesting as this, Mastcam did get a workout. There are seven different observations in the plan! It looks into the distance to the Texoli Butte we are observing as we drive along it, and at a target, “Brown Mountain.” Looking into the many different features are also imaging activities on the targets “Placerita Canyon,” “Humber Park,” and two others just named “trough,” which is a descriptive term for little trough features the team is tracking for a while with the quest to better understand their formation. ChemCam has a LIBS investigation on target “Inspiration Point,” and two long-distance RMI (Remote Micro Imager) observations. One is truly at a long distance on Gould Mesa, another of the mounts we are observing as we go along. There is another RMI activity closer to the rover, to investigate more of those very interesting structures.
      We also have environmental observations in the plan, observing the opacity of the atmosphere and of REMS investigations are occurring throughout the plan. REMS is our “weather station” measuring atmospheric pressure, temperature, humidity, winds, and ultraviolet radiation levels. DAN looks at the surface to measure the water and chlorine content in the rocks that the rover traverses over and RAD is looking up to the sky to measure the radiation that reaches the Martian surface. We do not often mention those in our blocks, because we are so used to seeing them there every single sol, doing their job, quietly in the background.
      With so much to do, the only remaining question was where to drive. That was discussed at length, weighing the different science reasons to go to places along the path, and after much deliberation we decided to go to one of the float rocks, but reserve the option to make a right turn in the next plan, to get to another interesting place. All those discussions are so important to make sure we are making the most of the power we have at this cold time of the year, and getting all the science we can get. I am excited to see the data from today’s plan… and to find out where we end up. Not with a wheel on a rock, please, Mars — that would be a good start. But if we do, I am absolutely confident there will be lots to investigate anyway!
      Share








      Details
      Last Updated Mar 06, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4471-4472: Marching Through the Canyon


      Article


      1 day ago
      2 min read Sols 4468-4470: A Wintry Mix of Mars Science


      Article


      3 days ago
      2 min read Smooshing for Science: A Flat-Out Success


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4471-4472: Marching Through the Canyon
      NASA’s Mars rover Curiosity acquired this image using its Mast Camera (Mastcam), a close-up of the rover’s Alpha Particle X-Ray Spectrometer (APXS), an instrument that measures the abundance of chemical elements in rocks and soils on the Martian surface. Located on the turret at the end of Curiosity’s robotic arm, APXS is about the size of a cupcake, and this image shows the handwritten markings on the instrument’s sensor head. Curiosity captured this image on March 23, 2024 — sol 4134, or Martian day 4,134 of the Mars Science Laboratory mission — at 21:59:21 UTC. NASA/JPL-Caltech/MSSS Written by Scott VanBommel, Planetary Scientist at Washington University
      Earth planning date: Monday, March 3, 2025
      Curiosity continued steady progress through the upper sulfate unit and toward its next major science waypoint: the boxwork structures. Our rover is currently driving south through a local canyon between “Texoli” and “Gould Mesa.” This route may expose the same rock layers observed while climbing along the eastern margin of the Gediz Vallis channel, prompting several science activities in today’s plan. With winter still gripping Gale crater and limiting the power available for science, the team carefully balanced a number of priorities.
      The weekend’s drive positioned the rover within reach of light-toned laminated bedrock and gray float rock. We kicked off our two-sol plan by removing dust on a representative bedrock target, “Ramona Trail,” before analyzing with APXS and imaging with MAHLI. ChemCam acquired compositional analyses on a laminated gray float rock, “Josephine Peak,” in addition to long-distance images of Texoli. Mastcam documented key features, capturing images of Josephine Peak, Texoli, “Gobblers Knob,” and “Fort Tejon.” In addition to these science-driven images, Mastcam also acquired two images of APXS before a planned drive of about 21 meters (about 69 feet).
      As Curiosity continues toward the boxwork structures, the intricate patterns we observe will provide valuable clues about the history of Mars. While the Mastcam images acquired today of the APXS sensor head won’t directly contribute to the boxwork study, they capture a more human aspect of the mission. With each “APXS horseshoe” image, such as the one featured in this blog from sol 4134, hand-written markings on the APXS sensor head appear alongside Martian terrain, a reminder that this incredible journey is driven by the human touch of a dedicated team on Earth who designed, built, and continue to operate this remarkable spacecraft.
      Share








      Details
      Last Updated Mar 05, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4468-4470: A Wintry Mix of Mars Science


      Article


      2 days ago
      2 min read Smooshing for Science: A Flat-Out Success


      Article


      5 days ago
      4 min read Sols 4466-4468: Heading Into the Small Canyon


      Article


      7 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4468-4470: A Wintry Mix of Mars Science
      NASA’s Mars rover Curiosity captured this image showing its wheel awkwardly perched atop one of the rocks in this location, as well as the textures of the layered sulfate unit bedrock blocks. The rover used its Left Navigation Camera (Navcam), one of a pair of stereo cameras on either side of the rover’s masthead, to record the image on Feb. 28, 2025, on sol 4466, or Martian day 4,466 of the Mars Science Laboratory mission, at 00:34:10 UTC. NASA/JPL-Caltech Written by Lucy Lim, Planetary Scientist at NASA’s Goddard Space Flight Center
      Earth planning date: Friday, Feb. 28, 2025
      Curiosity continues to climb roughly southward through the layered sulfate strata toward the “boxwork” features. Although the previous plan’s drive successfully advanced the rover roughly 21 meters southward (about 69 feet), the drive had ended with an awkwardly perched wheel. Because of this, unfortunately it was considered too risky to unstow the arm for contact science in this plan.
      Nevertheless the team made the most of the imaging and LIBS observations available from the rover’s current location. A large Mastcam mosaic was planned on the nearby Texoli butte to capture its sedimentary structures from the rover’s new perspective. Toward the west, the boxwork strata exposed on “Gould Mesa” were observed using the ChemCam long-distance imaging capability, with Mastcam providing color context.
      Several near-field Mastcam mosaics also captured some bedding and diagenetic structure in the nearby blocks as well as some modern aeolian troughs in the finer-grained material around them.
      On the nearby blocks, two representative local blocks (“Gabrelino Trail” and “Sespe Creek”) are to be “zapped” with the ChemCam laser to give us LIBS (laser-induced breakdown spectroscopy) compositional measurements. The original Gabrelino Trail on Earth near the JPL campus is currently closed due to damage from the recent wildfires.
      Meanwhile, the season on Mars (L_s ~ 50, or a solar longitude of about 50 degrees, heading into southern winter) has brought with it the opportunity to observe some recurring atmospheric phenomena: It’s aphelion cloud belt season, as well as Hadley cell transition season, during which a more southerly air mass crosses over Gale Crater. 
      This plan includes an APXS atmospheric observation (no arm movement required!) to measure argon and a ChemCam passive-sky observation to measure O2, which is a small (less than 1%) but measurable component in the Martian atmosphere. Dedicated cloud altitude observations, a phase function sky survey, and zenith and suprahorizon movies have also been included in the plan to characterize the clouds. As usual, the rover also continues to monitor the modern environment with measurements of atmospheric opacity via imaging, temperature, and humidity with REMS, and the local neutron environment with DAN.
      Share








      Details
      Last Updated Mar 04, 2025 Related Terms
      Blogs Explore More
      2 min read Smooshing for Science: A Flat-Out Success


      Article


      3 days ago
      4 min read Sols 4466-4468: Heading Into the Small Canyon


      Article


      5 days ago
      2 min read Sols 4464-4465: Making Good Progress


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 4 min read
      Sols 4466-4468: Heading Into the Small Canyon
      NASA’s Mars rover Curiosity produced this image from its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm. This image is a combination of two MAHLI images, merged on the rover on Feb. 25, 2025 — sol 4464, or Martian day 4,464 of the Mars Science Laboratory mission — at 22:36:53 UTC. NASA/JPL-Caltech/MSSS Written by Susanne Schwenzer, Planetary Geologist at The Open University
      Earth planning date: Wednesday, Feb. 26, 2025
      The fine detail of the image above reminds us once again that geoscience — on Mars and on Earth — is an observational science. If you look at the image for a few moments, you will see that there are different areas made of different textures. You will also observe that some features appear to be more resistant to weathering than others, and as a consequence stand out from the surface or the rims of the block. Sedimentologists will study this and many other images in fine detail and compare them to similar images we have acquired along the most recent drive path. From that they put together a reconstruction of the environment billions of years in the past: Was it water or wind that laid down those rocks, and what happened next? Many of the knobbly textures might be from water-rock interaction that happened after the initial deposition of the material. We will see; the jury is out on what these details tell us, and we are looking closely at all those beautiful images and then will turn to the chemistry data to understand even more about those rocks.
      In the caption of the image above it says “merged” images. This is an imaging process that happens aboard the rover — it takes two (or more) images of the same location on the same target, acquired at different focus positions, and merges them so a wider range of the rock is in focus. This is especially valuable on textures that have a high relief, such as the above shown example. The rover is quite clever, isn’t it?
      In today’s plan MAHLI does not have such an elaborate task, but instead it is documenting the rock that the APXS instrument is measuring. The team decided that it is time for APXS to measure the regular bedrock again, because we are driving out of an area that is darker on the orbital image and into a lighter area. If you want, you can follow our progress on that orbital image. (But I am sure many of the regular readers of this blog know that!)
      That bedrock target was named “Trippet Ranch.” ChemCam investigates the target “San Ysidro Trail,” which is a grayish-looking vein. As someone interested in water-rock interactions for my research, I always love plans that have the surrounding rock (the APXS target in this case) and the alteration features in the same location. This allows us to tease out which of the chemical components of the rock might have moved upon contact with water, and which ones have not.
      As we are driving through very interesting terrain, with walls exposed on the mesas — especially Gould mesa — and lots of textures in the blocks around us, there are many Mastcam mosaics in today’s plan! The mosaics on “Lytle Creek,” “Round Valley,” “Heaton Flat,” “Los Liones,” and the single image on “Mount Pinos” all document this variety of structures, and another mosaic looks right at our workspace. It did not get a nice name as it is part of a series with a more descriptive name all called “trough.” We often do this to keep things together in logical order when it comes to imaging series. The long-distance RMIs in today’s plan are another example of this, as they are just called “Gould,” followed by the sol number they will be taken on — that’s 4466 — and a and b to distinguish the two from each other. Gould Mesa, the target of both of them, exposes many different structures and textures, and looking at such walls — geologists call them outcrops — lets us read the rock record like a history book! And it will get even better in the next few weeks as we are heading into a small canyon and will have walls on both sides. Lots of science to come in the next few downlinks, and lots of science on the ground already! I’d better get back to thinking about some of the data we have received recently, while the rover is busy exploring the ever-changing geology and mineralogy on the flanks of Mount Sharp.
      Share








      Details
      Last Updated Feb 26, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4464-4465: Making Good Progress


      Article


      5 hours ago
      3 min read Sols 4461-4463: Salty Salton Sea?


      Article


      1 day ago
      2 min read Gardens on Mars? No, Just Rocks!


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...