Members Can Post Anonymously On This Site
6 Things to Know About SPHEREx, NASA’s Newest Space Telescope
-
Similar Topics
-
By NASA
Official NASA portrait of Norman D. Knight. Credit: NASA NASA has selected Norman Knight as acting deputy director of Johnson Space Center. Knight currently serves as Director of Johnson’s Flight Operations Directorate (FOD), responsible for astronaut training and for overall planning, directing, managing, and implementing overall mission operations for NASA human spaceflight programs. This also includes management for all Johnson aircraft operations and aircrew training. Knight will serve in this dual deputy director and FOD director role for the near term.
“It is an honor to accept my new role as acting deputy director for Johnson,” Knight said. “Human spaceflight is key to our agency’s mission and our Johnson team is unified in that goal. The successes we see every day are the evidence of that. It never ceases to amaze me what our team is capable of.”
Knight began his career at the Johnson Space Center as a Space Shuttle mechanical systems flight controller, working 40 missions in this capacity. He progressed through management roles with increasing responsibility, and in 2000, he was selected as a flight director and worked in that capacity for numerous International Space Station expeditions and Space Shuttle missions. In 2009, he became the deputy chief of the Flight Director Office and participated in a NASA fellowship at Harvard Business School in general management. In 2012, Knight was selected as the chief of the Flight Director Office and then in 2018 as deputy director of the Flight Operations Directorate after serving a temporary assignment as the assistant administrator, Human Exploration and Operations Mission Directorate at NASA Headquarters. In 2021, Knight was selected as the director of FOD.
“Norm has an accomplished career within the agency,” said Steven Koerner, Johnson acting director. “His leadership, expertise, and dedication to the mission will undoubtably drive our continued success.”
Throughout his career, Knight has been recognized for outstanding technical achievements and leadership, receiving a Spaceflight Awareness Honoree award for STS-82. He also received several center and agency awards, including two Exceptional Achievement medals, multiple Johnson and agency group achievement awards, two Superior Accomplishment awards, an Outstanding Leadership medal, the Johnson Director’s Commendation award, and the Distinguished Service medal.
Knight earned a bachelor’s degree in aeronautical engineering from the Embry Riddle Aeronautical University in 1990.
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Sunlight gleams off NASA’s Lunar Trailblazer as the dishwasher-size spacecraft orbits the Moon in this artist’s concept. The mission will discover where the Moon’s water is, what form it is in, and how it changes over time, producing the best-yet maps of water on the lunar surface.Lockheed Martin Space The small satellite mission will map the Moon to help scientists better understand where its water is, what form it’s in, how much is there, and how it changes over time.
Launching no earlier than Wednesday, Feb. 26, NASA’s Lunar Trailblazer will help resolve an enduring mystery: Where is the Moon’s water? After sharing a ride on a SpaceX Falcon 9 rocket with Intuitive Machines’ IM-2 launch — part of NASA’s CLPS (Commercial Lunar Payload Services) initiative — the small satellite will take several months to arrive in lunar orbit.
Here are six things to know about the mission.
1. Lunar Trailblazer will produce high-resolution maps of water on the lunar surface.
One of the biggest lunar discoveries in recent decades is that the Moon’s surface has quantities of water, but little about its nature is known. To investigate, Lunar Trailblazer will decipher where the water is, what form it is in, how much is there, and how it changes over time. The small satellite will produce the best-yet maps of water on the lunar surface. Observations gathered during the two-year prime mission will also contribute to the understanding of water cycles on airless bodies throughout the solar system.
2. The small satellite will use two state-of-the-art science instruments.
Key to achieving these goals are the spacecraft’s two science instruments: the High-resolution Volatiles and Minerals Moon Mapper (HVM3) infrared spectrometer and the Lunar Thermal Mapper (LTM) infrared multispectral imager. NASA’s Jet Propulsion Laboratory in Southern California provided the HVM3 instrument, while LTM was built by the University of Oxford and funded by the UK Space Agency.
HVM3 will detect and map the spectral fingerprints, or wavelengths of reflected sunlight, of minerals and the different forms of water on the lunar surface. The LTM instrument will map the minerals and thermal properties of the same landscape. Together they will create a picture of the abundance, location, and form of water while also tracking how its distribution changes over time and temperature.
Fueled and attached to an adaptor used for secondary payloads, NASA’s Lunar Trailblazer is seen at SpaceX’s payload processing facility within NASA’s Kennedy Space Center in Florida in early February 2025. The small satellite is riding along on Intuitive Machines’ IM-2 launch.SpaceX 3. Lunar Trailblazer will take a long and winding road to the Moon.
Weighing only 440 pounds (200 kilograms) and measuring 11.5 feet (3.5 meters) wide with its solar panels fully deployed, Lunar Trailblazer is about the size of a dishwasher and relies on a relatively small propulsion system. To make the spacecraft’s four-to-seven-month trip to the Moon (depending on the launch date) as efficient as possible, the mission’s design and navigation team has planned a looping trajectory that will use the gravity of the Sun, Earth, and Moon to guide Lunar Trailblazer to its final science orbit — a technique called low-energy transfer.
4. The spacecraft will peer into the darkest parts of the Moon’s South Pole.
Lunar Trailblazer’s science orbit positions it to peer into the craters at the Moon’s South Pole using the HVM3 instrument. What makes these craters so intriguing is that they harbor cold traps that may not have seen direct sunlight for billions of years, which means they’re a potential hideout for frozen water. The HVM3 spectrometer is designed to use faint reflected light from the walls of craters to see the floor of even permanently shadowed regions. If Lunar Trailblazer finds significant quantities of ice at the base of the craters, those locations could be pinpointed as a resource for future lunar explorers.
5. Lunar Trailblazer is a high-risk, low-cost mission.
Lunar Trailblazer was a 2019 selection of NASA’s SIMPLEx (Small Innovative Missions for Planetary Exploration), which provides opportunities for low-cost science spacecraft to ride-share with selected primary missions. To maintain a lower overall cost, SIMPLEx missions have a higher risk posture and lighter requirements for oversight and management. This higher risk acceptance allows NASA to enable science missions that could not otherwise be done.
6. Future missions will benefit from Lunar Trailblazer’s data.
Mapping the Moon’s water supports future human and robotic lunar missions. With knowledge from Lunar Trailblazer of where water is located, astronauts could process lunar ice to create water for human use, breathable oxygen, or fuel. And they could conduct science by sampling the ice for later study to determine the water’s origins.
More About Lunar Trailblazer
Lunar Trailblazer is led by Principal Investigator Bethany Ehlmann of Caltech in Pasadena, California. Caltech also leads the mission’s science investigation, and Caltech’s IPAC leads mission operations, which includes planning, scheduling, and sequencing of all spacecraft activities. NASA JPL manages Lunar Trailblazer and provides system engineering, mission assurance, the HVM3 instrument, and mission design and navigation. JPL is managed by Caltech for NASA. Lockheed Martin Space provided the spacecraft, integrated the flight system, and supports operations under contract with Caltech. The University of Oxford developed and provided the LTM instrument, funded by the UK Space Agency. Lunar Trailblazer, part of NASA’s Lunar Discovery Exploration Program, is managed by NASA’s Planetary Mission Program Office at Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.
News Media Contact
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov
Isabel Swafford
Caltech IPAC
626-216-4257
iswafford@ipac.caltech.edu
2025-027
Share
Details
Last Updated Feb 26, 2025 Related Terms
Lunar Trailblazer Commercial Lunar Payload Services (CLPS) Earth's Moon Lunar Science Explore More
1 min read Intuitive Machines’ IM-2 Mission
Article 1 day ago 2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon
Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the…
Article 1 day ago 4 min read Five Facts About NASA’s Moon Bound Technology
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Credit: NASA NASA has selected SpaceX of Starbase, Texas, to provide launch services for the Near-Earth Object (NEO) Surveyor mission, which will detect and observe asteroids and comets that could potentially pose an impact threat to Earth.
The firm fixed price launch service task order is being awarded under the indefinite delivery/indefinite quantity NASA Launch Services II contract. The total cost to NASA for the launch service is approximately $100 million, which includes the launch service and other mission related costs. The NEO Surveyor mission is targeted to launch no earlier than September 2027 on a SpaceX Falcon 9 rocket from Florida.
The NEO Surveyor mission consists of a single scientific instrument: an almost 20-inch (50-centimeter) diameter telescope that will operate in two heat-sensing infrared wavelengths. It will be capable of detecting both bright and dark asteroids, the latter being the most difficult type to find with existing assets. The space telescope is designed to help advance NASA’s planetary defense efforts to discover and characterize most of the potentially hazardous asteroids and comets that come within 30 million miles of Earth’s orbit. These are collectively known as near-Earth objects, or NEOs.
The mission will carry out a five-year baseline survey to find at least two-thirds of the unknown NEOs larger than 140 meters (460 feet). These are the objects large enough to cause major regional damage in the event of an Earth impact. By using two heat-sensitive infrared imaging channels, the telescope can also make more accurate measurements of the sizes of NEOs and gain information about their composition, shapes, rotational states, and orbits.
The mission is tasked by NASA’s Planetary Science Division within the agency’s Science Mission Directorate at NASA Headquarters in Washington. Program oversight is provided by NASA’s Planetary Defense Coordination Office, which was established in 2016 to manage the agency’s ongoing efforts in planetary defense. NASA’s Planetary Missions Program Office at the agency’s Marshall Space Flight Center in Huntsville, Alabama, provides program management for NEO Surveyor. The project is being developed by NASA’s Jet Propulsion Laboratory in Southern California.
Multiple aerospace and engineering companies are contracted to build the spacecraft and its instrumentation, including BAE Systems SMS (Space & Mission Systems), Space Dynamics Laboratory, and Teledyne. The Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder, will support operations, and the Infrared Processing and Analysis Center at the California Institute of Technology (Caltech) in Pasadena, California, is responsible for processing survey data and producing the mission’s data products. Caltech manages JPL for NASA. Mission team leadership includes the University of California, Los Angeles. NASA’s Launch Services Program at the agency’s Kennedy Space Center in Florida is responsible for managing the launch service.
For more information about NEO Surveyor, visit:
https://science.nasa.gov/mission/neo-surveyor/
-end-
Tiernan Doyle / Joshua Finch
Headquarters, Washington
202-358-1600 / 202-358-1100
tiernan.doyle@nasa.gov / joshua.a.finch@nasa.gov
Patti Bielling
Kennedy Space Center, Florida
321-501-7575
patricia.a.bielling@nasa.gov
Share
Details
Last Updated Feb 21, 2025 LocationNASA Headquarters Related Terms
Kennedy Space Center Launch Services Office Launch Services Program NEO Surveyor (Near-Earth Object Surveyor Space Telescope) Planetary Defense Coordination Office Planetary Science Division Science Mission Directorate Space Operations Mission Directorate View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.