Members Can Post Anonymously On This Site
Sols 4439-4440: A Lunar New Year on Mars
-
Similar Topics
-
By European Space Agency
The European Space Agency (ESA) has signed a contract with Thales Alenia Space in Italy to lead European aerospace companies in building the Argonaut Lunar Descent Element, ESA’s first lunar lander.
View the full article
-
By NASA
NASA/JPL-Caltech/University of Arizona This Oct. 29, 2018, image from the HiRISE camera on NASA’s Mars Reconnaissance Orbiter captures geysers of gas and dust that occur in springtime in the South Polar region of Mars. As the Sun rises higher in the sky, the thick coating of carbon dioxide ice that accumulated over the winter begins to warm and then turn to vapor. Sunlight penetrates through the transparent ice and is absorbed at the base of the ice layer. The gas that forms because of the warming escapes through weaknesses in the ice and erupts in the form of geysers.
HiRISE, or the High Resolution Imaging Science Experiment, is a powerful camera that takes pictures covering vast areas of Martian terrain while being able to see features as small as a kitchen table.
Image credit: NASA/JPL-Caltech/University of Arizona
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
Sols 4437-4438: Coordinating our Dance Moves
NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on sol 4435 — Martian day 4,435 of the Mars Science Laboratory mission — on Jan. 27, 2025, at 02:23:35 UTC. NASA/JPL-Caltech Earth planning date: Monday, Jan. 27, 2025
I was Geology and Mineralogy (Geo) Science Team lead today, and my day started with a bang and a drum roll — delivered by a rare winter thunderstorm (rare here in England, at least). I did lose power for a few minutes, but thanks to laptop batteries and phone Wi-Fi, I think no one noticed … so, shhh, don’t tell the boss!
Planning was especially interesting as we had a decision to make, whether we want to align ChemCam and APXS observations with each other and focus on one target, or whether we want two different targets. As Geo Science Team lead, it is my role to facilitate this discussion, but that is always fun — and easy. Many colleagues come with well-prepared reasons for why they want to have a certain observation in today’s plan, and I always learn something new about Mars, or geology, or both when those discussions happen. Weighing all arguments carefully, we decided for the coordinated dance of contact and remote science observations on a bedrock target we named “Desert View.” APXS will start the dance, followed by ChemCam active and one RMI image on the same location. Closing out the dance will be MAHLI, by imaging the APXS target that at this point will have the laser pits.
Such a coordinated observation will allow us to see how the rock reacts to the interaction with the laser. We have done this many times, and often learnt interesting things about the mineralogy of the rock. But more than 10 years ago, there was an even more ambitious coordination exercise: On sol 687 the imaging on a target called “Nova” was timed so that Mastcam actually captured the laser spark in the image. While that’s useful for engineering purposes, as a mineralogist I want to see the effect on the rock. Here is the result of that “spark” on target Nova on sol 687.
But back to today’s planning. Apart from the coordinated observations, ChemCam also adds to the Remote Micro Imager coverage of Gould Mesa with a vertical RMI observation that is designed to cover all the nice layers in the mesa, just like a stratigraphic column. Mastcam is looking back at the Rustic Canyon crater to get a new angle. Craters are three-dimensional and looking at it from all sides will help decipher the nature of this small crater, and also make full use of the window into the underground that it offers. Mastcam has two more mosaics, “Condor Peak” and “Boulder Basin,” which are both looking at interesting features in the landscape: Condor Peak at a newly visible butte, and Boulder Basin at bedrock targets in the near-field, to ascertain the structures and textures are still the same as they have been, or document any possible changes. Mars has surprised us before, so we try to look as often as power and other resources allow, even if only to confirm that nothing has changed. You can see the blocks that we are using for this observation in the grayscale Navigation Camera image above; we especially like it when upturned blocks give us a different view, while flat lying blocks in the same image show the “regular” perspective.
After the targeted science is completed, the rover will continue its drive along the planned route, to see what Mars has to offer on the next stop. After the drive, MARDI will take its image, and ChemCam do an autonomous observation, picking its own target. Also after the drive is a set of atmospheric observations to look at dust levels and search for dust devils. Continuous observations throughout include the DAN instrument’s observation of the surface and measurements of wind and temperature.
With that, the plan is again making best use of all the power we have available… and here in England the weather has improved, inside my power is back to normal, and outside it’s all back to the proverbial rain this small island is so famous for.
Written by Susanne Schwenzer, Planetary Geologist at The Open University
Share
Details
Last Updated Jan 29, 2025 Related Terms
Blogs Explore More
2 min read Sols 4434-4436: Last Call for Clouds
Article
2 days ago
3 min read What ‘Perseverance’ Means on Mars and for Our NASA Family
Article
5 days ago
3 min read Sols 4431-4433: On the rim of ‘Rustic Canyon’
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
NASA’s Michoud Assembly Facility in New Orleans, includes 43 acres of manufacturing space under one roof — a space large enough to contain more than 31 professional football fields. Credit: NASA Media are invited to visit NASA’s Michoud Assembly Facility in New Orleans between Tuesday, Feb. 4, and Thursday, Feb. 6, ahead of Super Bowl LIX for an inside look America’s rocket factory, as well as interview agency experts.
During this behind-the-scenes visit, media will tour NASA’s location for the manufacturing and production of large-scale space structures and see hardware that will carry astronauts back to the Moon as part of the Artemis campaign.
Registered members of the media will have the opportunity to:
Capture images and video of hardware NASA Michoud is building for the SLS (Space Launch System) rocket, Orion spacecraft, and SLS exploration upper stage for the agency’s Artemis campaign. Tour special locations around NASA Michoud, one of the largest facilities in the world, with 43 acres of manufacturing space under one roof — a space large enough to contain more than 31 professional football fields. Learn about NASA’s state-of-the-art manufacturing and welding equipment — including the world’s largest friction-stir welding tool. Media must RSVP no later than 6 p.m. EST, Thursday, Jan. 30, to Jonathan Deal at: jonathan.deal@nasa.gov and Craig Betbeze at: craig.c.betbeze@nasa.gov. Please indicate a preferred date to visit between Feb. 4 and Feb. 6. This event is open to U.S. media. NASA’s media accreditation policy is available online.
Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars.
Learn more about NASA’s Artemis campaign:
https://www.nasa.gov/artemis
-end-
Rachel Kraft
NASA Headquarters, Washington
202-358-1100
rachel.h.kraft@nasa.gov
Jonathan Deal
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
jonathan.e.deal@nasa.gov
Share
Details
Last Updated Jan 27, 2025 LocationMarshall Space Flight Center View the full article
-
By NASA
NASA JPL is readying for, clockwise from lower right, the launches of CADRE (its engineering models are seen here), Lunar Trailblazer, NISAR (seen in an artist’s concept), Sentinel-6B (artist’s concept), and SPHEREx, as well as the Mars gravity assist of Europa Clipper (artist’s concept).NASA/JPL-Caltech/BAE Systems/Lockheed Martin Space Missions will study everything from water on the Moon to the transformation of our universe after the big bang and ongoing changes to Earth’s surface.
With 2024 receding into the distance, NASA’s Jet Propulsion Laboratory is already deep into a busy 2025. Early in the new year, the Eaton Fire came close to JPL, destroying the homes of more than 200 employees, but work has continued apace to maintain mission operations and keep upcoming missions on track.
Several missions managed by NASA JPL are prepping for launch this year. Most have been years in the making and launches are, of course, only part of the bigger picture. Other milestones are also on the docket for the federal laboratory, which Caltech manages for NASA.
Here’s a glimpse of what lies ahead this year.
Mysterious Universe
Shaped like the bell of a trumpet and as big as a subcompact car, NASA’s SPHEREx space observatory is aiming for the stars. Known formally as the Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer, the mission will create four 3D maps of the entire sky in order to improve humanity’s understanding of the universe — how it expanded after the big bang, where ingredients of life can be found in ice grains, and much more. Target launch date: no earlier than Feb. 27 from Vandenberg Space Force Base in California.
The Moon’s Icy Secrets
NASA’s Lunar Trailblazer aims to help resolve an enduring mystery: Where is the Moon’s water? Scientists have seen signs suggesting it exists even where temperatures soar on the lunar surface, and there’s good reason to believe it can be found as surface ice in permanently shadowed craters, places that have not seen direct sunlight for billions of years. Managed by NASA JPL and led by Caltech, the small satellite will help provide answers, mapping the Moon’s surface water in unprecedented detail to determine the water’s abundance, location, form, and how it changes over time. The small satellite will hitch a ride, slated for late February, on the same launch as the Intuitive Machines-2 delivery to the Moon through NASA’s CLPS (Commercial Lunar Payload Services) initiative.
Earth’s Changing Surface
A collaboration between the United States and India, NISAR is a major addition to the fleet of satellites studying our changing planet. Short for NASA-Indian Space Research Organisation Synthetic Aperture Radar, the mission’s name is a nesting doll of acronyms, and the spacecraft is a nesting doll of capabilities: The first spacecraft to carry both L-band and S-band radars, it will see surface changes related to volcanoes, earthquakes, ice sheet motion, deforestation, and more in unprecedented detail after it launches in a few months’ time.
Sea Level
Targeting a November launch, Sentinel-6B will provide global sea surface height measurements — some of the most accurate data of its kind yet — that will improve climate models and hurricane tracking, as well as our understanding of phenomena like El Niño. A collaboration between NASA and ESA (European Space Agency), the spacecraft will take the baton from its twin, Sentinel-6 Michael Freilich, which launched in 2020. Together, the satellites are extending for another 10 years a nearly three-decade record of global sea surface height.
Moon Rover Trio
As a technology demonstration, the CADRE (Cooperative Autonomous Distributed Robotic Exploration) project marks another step NASA is taking toward developing robots that, by operating autonomously, can boost the efficiency of future missions. The project team at JPL will soon be packing up and shipping CADRE’s three suitcase-size rovers to Texas in preparation for their journey to the Moon aboard a commercial lander through one of NASA’s future CLPS deliveries. The rovers are designed to work together as a team without direct input from mission controllers back on Earth. And, by taking simultaneous measurements from multiple locations, they are meant to show how multirobot missions could enable new science and support astronauts.
Quantum Technology
Having arrived at the International Space Station in November, SEAQUE (Space Entanglement and Annealing QUantum Experiment) is testing two technologies that, if successful, could enable communication using entangled photons between two quantum systems. The research from this experiment, which gets underway in 2025, could help develop the building blocks for a future global quantum network that would allow equipment such as quantum computers to transfer data securely across large distances.
Gravity Assist to Reach Jupiter
Launched this past October, Europa Clipper will arrive at Jupiter in 2030 to investigate whether an ocean beneath the ice shell of the gas giant’s moon Europa has conditions suitable for life. The spacecraft will travel 1.8 billion miles (2.9 billion kilometers) to reach its destination. Since there are limitations on how much fuel the spacecraft can carry, mission planners are having Europa Clipper fly by Mars on March 1, using the planet’s gravity as a slingshot to add speed to its journey.
For more about NASA missions JPL supports, go to:
https://www.jpl.nasa.gov/missions/
Meet SPHEREx, NASA’s newest cosmic mapper How NISAR will track Earth’s changing surface CADRE’s mini-rovers will team up to explore the Moon Instruments deployed, Europa Clipper is Mars-bound News Media Contact
Matthew Segal
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-8307
matthew.j.segal@jpl.nasa.gov
2025-008
Share
Details
Last Updated Jan 23, 2025 Related Terms
Jet Propulsion Laboratory Explore More
5 min read Study Finds Earth’s Small Asteroid Visitor Likely Chunk of Moon Rock
Article 1 day ago 5 min read How New NASA, India Earth Satellite NISAR Will See Earth
Article 2 days ago 4 min read NASA Scientists, Engineers Receive Presidential Early Career Awards
Article 6 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.