Jump to content

Recommended Posts

  • Publishers
Posted

2 min read

Sols 4439-4440: A Lunar New Year on Mars

A grayscale image from the Martian surface shows very rocky, medium gray terrain in the foreground leading to a gently sloping hill on the horizon at left, and a smaller butte at image center. The ground is covered in medium-sized rocks of many shapes and angles pushing up from the soil. Prominent in the center foreground is a medium-sized, wedge-shaped rock that points toward the right and is much darker than the surrounding terrain.
NASA’s Mars rover Curiosity captured this image, which includes the prominent wedge-shaped block in the foreground, the imaging target dubbed “Vasquez Rocks” — named after a site in Southern California that’s been a popular filming location for movies and television, including several episodes of “Star Trek.” Curiosity acquired this image using its Left Navigation Camera on sol 4437 — Martian day 4,437 of the Mars Science Laboratory mission — on Jan. 29, 2025, at 04:25:25 UTC.
NASA/JPL-Caltech

Earth planning date: Wednesday, Jan. 29, 2025

We’re planning sols 4439 and 4440 on the first day of the Lunar New Year here on Earth, and I’m the Geology/Mineralogy Science Theme Lead for today. The new year is a time for all kinds of abundance and good luck, and we are certainly lucky to be celebrating another new year on Mars with the Curiosity rover!

The rover’s current position is on the north side of the “Texoli” butte west of the “Rustic Canyon” crater, and we are on our way southwest through the layered sulfate unit toward a possible boxwork structure that we hope to study later this year. Today’s workspace included a couple of representative bedrock blocks with contrasting textures, so we planned an APXS elemental chemistry measurement on one (“Deer Springs”) and a LIBS elemental measurement on another (“Taco Peak”).

For imaging, there were quite a few targets in view making it possible to advance a variety of science goals. The ChemCam remote imager was used for a mosaic on “Wilkerson Butte” to observe the pattern of resistant and recessive layering. Mastcam mosaics explored some distant landforms (“Sandstone Peak,” “Wella’s Peak”) as well as fractures, block shapes and textures, and aeolian ripples closer to the rover (“Tahquitz Peak,” “Mount Islip,” “Vasquez Rocks,” “Dawson Saddle”). Our regular environmental science measurements were made as well, to track atmospheric opacity and dust activity. So our planning sols include an abundance of targets indeed.

Fun fact: Today’s name “Vasquez Rocks” comes from a site on Earth in Southern California that has been a popular spot for science fiction filming, appearing in several episodes of “Star Trek” going back to the original series!

Written by Lucy Lim, Participating Scientist at Goddard Space Flight Center

Share

Details

Last Updated
Jan 31, 2025

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Sols 4507-4508: “Just Keep Driving”
      NASA’s Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, on April 9, 2025, Sol 4505 of the Mars Science Laboratory Mission, at 00:56:30 UTC. NASA/JPL-Caltech/MSSS Written by Natalie Moore, Mission Operations Specialist at Malin Space Science Systems
      Earth planning date: Wednesday, April 9, 2025
      Our drive from Monday’s plan was mostly successful, putting us ~22 meters down the “road” out of an expected 30 meters. A steering command halted the drive a little short when we tried to turn-in-place but instead turned into a rock, which also had the effect of making our position too unstable for arm activities. Oh well! APXS data has been showing the recent terrain as being pretty similar in composition, so the team isn’t complaining about trying again after another drive. Plus, keeping the arm stowed should give us a little more power to play with in the coming sols (an ongoing struggle this Martian winter).
      Recently, my job on Mastcam has been to make sure our science imaging is as concurrent as possible with required rover activities. This strategy helps save rover awake time, AKA power consumption. Today we did a pretty good job with this, only increasing the total awake time by ~2 minutes even though we planned 52 images! Our imaging today included a mosaic of the “Devil’s Gate” ridge including some nodular bedrock and distant “Torote Bowl,” a mosaic of a close-by vein network named “Moonstone Beach,” and several sandy troughs surrounding the bedrock blocks we see here. 
      ChemCam is planning a LIBS raster on a vertical vein in our workspace named “Jackrabbit Flat,” and a distant RMI mosaic of “Condor Peak” (a butte to the north we’re losing view of). Our drive will happen in the 1400 hour on the first sol, hopefully landing us successfully 53 meters further into this new valley on our way to the boxwork structures to the west! Post-drive, we’re including a test of a “Post Traverse Autonav Terrain Observation” AKA PoTATO – an easy drop-in activity for ground analysis of a rover-built navigation map of our new terrain. Plus we get to say PoTATO a lot.
      Explore More
      3 min read Sols 4505-4506: Up, up and onto the Devil’s Gate 


      Article


      3 days ago
      3 min read Sols 4502-4504: Sneaking Past Devil’s Gate


      Article


      4 days ago
      3 min read Sols 4500-4501: Bedrock With a Side of Sand


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Mars Resources


      Explore this page for a curated collection of Mars resources.


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Curiosity Rover (MSL)


      View the full article
    • By NASA
      Explore This Section Science Science Activation GLOBE, NASA, and the Monsignor… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   4 min read
      GLOBE, NASA, and the Monsignor McClancy Memorial High School in Queens, New York
      When students actively participate in scientific investigations that connect to their everyday lives, something powerful happens: they begin to see themselves as scientists. This sense of relevance and ownership can spark a lifelong interest in science, technology, engineering, and math (STEM), paving the way for continued education and even future careers in these fields. Opportunities to engage directly with NASA science—like the one you’ll read about in this story—not only deepen students’ understanding of STEM concepts, but also nourish their curiosity and confidence. With the support of passionate educators, these moments of participation become stepping stones to a future in which students see themselves as contributors to real-world science.
      In September 2021, Ms. Deanna Danke, a Monsignor McClancy Memorial High School mathematics teacher in Queens, New York, began teaching her students how to measure tree heights using trigonometry. Soon enough, Ms. Danke discovered the Global Learning and Observations to Benefit the Environment (GLOBE) Observer Trees Tool, and with her 150+ students, began taking tree height observations around the school, an activity that Ms. Danke and her students continue to participate in today. Her and her students’ hundreds of repeat tree height observations have provided student and professional researchers with clusters of measurements that can coincide with measurements made by NASA satellite instruments, allowing for a comparison of datasets that can be analyzed over time.
      Due to the consistent tree height data collection resulting from this effort, Ms. Danke was asked to be a co-author on a peer-reviewed research paper that was published on June 21, 2022 in the Environmental Research Letters special journal “Focus on Public Participation in Environmental Research.” The paper, “The potential of citizen science data to complement satellite and airborne lidar tree height measurements: lessons from The GLOBE Program,” included data from the tree height observations reported by Ms. Danke and her students—an incredible achievement for everyone involved.
      On March 21, 2025, Ms. Danke’s former and current students continued their inspiring adventures with NASA science by taking a trip to the NASA Wallops Flight Facility in Wallops Island, Virginia. Highlights from this trip included science and technology presentations by personnel from the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) and Global Precipitation Measurement (GPM) Missions, the Wallops Balloon Program Office, and the Wallops Machine Shop for Fabrication and Testing. The ICESat-2 presentation, in particular, included a discussion on the student-collected tree height data and how the ICESat-2 satellite makes tree height observations from space.
      Ms. Danke’s work is a testament to the incredible impact educators can have when they connect classroom learning to authentic scientific discovery. By introducing her students to tools like the GLOBE Observer Trees Tool and facilitating meaningful contributions to NASA science, she opened the door to experiences most students only dream of—from collecting data that supports satellite missions to co-authoring peer-reviewed research and visiting NASA facilities. Stories like this remind us that when students are empowered to be part of real science, the possibilities—for learning, inspiration, and future careers in STEM—are truly limitless.
      The GLOBE Observer app, used by Ms. Danke and her students, is made possible by the NASA Earth Science Education Collaborative (NESEC). This free mobile app includes four tools that enable citizen scientists to participate in NASA science: Clouds, Mosquito Habitat Mapper, Land Cover, and Trees. Learn more about ways that you can join and participate in this and other NASA Citizen Science projects. Through these projects, sometimes called “participatory science” projects, volunteers and amateurs have helped make thousands of important scientific discoveries, and they are open to everyone around the world (no citizenship required).
      NESEC is supported by NASA under cooperative agreement award number NNX16AE28A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Map of tree height around the Monsignor McClancy Memorial High School from the GLOBE Program’s Visualization System. I know this was an experience they will remember forever and they have already told me that they cannot wait to tell their future children about it. It was wonderful meeting you in person and being on site to get a real sense of what you are working on. The boys were especially fascinated by the last two stops on the tour and appreciated learning a little more about how tree height is measured. Thank you again for this incredible opportunity.”
      Ms. Deanna Danke
      Monsignor McClancy Memorial High School
      Share








      Details
      Last Updated Apr 10, 2025 Editor NASA Science Editorial Team Location Wallops Flight Facility Related Terms
      Science Activation Earth Science Opportunities For Students to Get Involved Explore More
      3 min read NASA Science Supports Data Literacy for K-12 Students


      Article


      1 day ago
      3 min read Findings from the Field: A Research Symposium for Student Scientists


      Article


      2 days ago
      34 min read Style Guidelines for ‘The Earth Observer’ Newsletter 


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This mosaic showing the Martian surface outside of Jezero Crater was taken by NASA’s Perseverance on Dec. 25, 2024, at the site where the rover cored a sample dubbed “Silver Mountain” from a rock likely formed during Mars’ earliest geologic period.NASA/JPL-Caltech/ASU/MSSS The diversity of rock types along the rim of Jezero Crater offers a wide glimpse of Martian history.
      Scientists with NASA’s Perseverance rover are exploring what they consider a veritable Martian cornucopia full of intriguing rocky outcrops on the rim of Jezero Crater. Studying rocks, boulders, and outcrops helps scientists understand the planet’s history, evolution, and potential for past or present habitability. Since January, the rover has cored five rocks on the rim, sealing samples from three of them in sample tubes. It’s also performed up-close analysis of seven rocks and analyzed another 83 from afar by zapping them with a laser. This is the mission’s fastest science-collection tempo since the rover landed on the Red Planet more than four years ago.
      Perseverance climbed the western wall of Jezero Crater for 3½ months, reaching the rim on Dec. 12, 2024, and is currently exploring a roughly 445-foot-tall (135-meter-tall) slope the science team calls “Witch Hazel Hill.” The diversity of rocks they have found there has gone beyond their expectations.
      “During previous science campaigns in Jezero, it could take several months to find a rock that was significantly different from the last rock we sampled and scientifically unique enough for sampling,” said Perseverance’s project scientist, Katie Stack Morgan of NASA’s Jet Propulsion Laboratory in Southern California. “But up here on the crater rim, there are new and intriguing rocks everywhere the rover turns. It has been all we had hoped for and more.”
      One of Perseverance’s hazard cameras captured the rover’s coring drill collecting the “Main River” rock sample on “Witch Hazel Hill” on March 10, 2025, the 1,441st Martian day, or sol, of the mission. NASA/JPL-Caltech That’s because Jezero Crater’s western rim contains tons of fragmented once-molten rocks that were knocked out of their subterranean home billions of years ago by one or more meteor impacts, including possibly the one that produced Jezero Crater. Perseverance is finding these formerly underground boulders juxtaposed with well-preserved layered rocks that were “born” billions of years ago on what would become the crater’s rim. And just a short drive away is a boulder showing signs that it was modified by water nestled beside one that saw little water in its past.
      Oldest Sample Yet?
      Perseverance collected its first crater-rim rock sample, named “Silver Mountain,” on Jan. 28. (NASA scientists informally nickname Martian features, including rocks and, separately, rock samples, to help keep track of them.) The rock it came from, called “Shallow Bay,” most likely formed at least 3.9 billion years ago during Mars’ earliest geologic period, the Noachian, and it may have been broken up and recrystallized during an ancient meteor impact.
      About 360 feet (110 meters) away from that sampling site is an outcrop that caught the science team’s eye because it contains igneous minerals crystallized from magma deep in the Martian crust. (Igneous rocks can form deep underground from magma or from volcanic activity at the surface, and they are excellent record-keepers — particularly because mineral crystals within them preserve details about the precise moment they formed.) But after two coring attempts (on Feb. 4 and Feb. 8) fizzled due to the rock being so crumbly, the rover drove about 520 feet (160 meters) northwest to another scientifically intriguing rock, dubbed “Tablelands.”
      Data from the rover’s instruments indicates that Tablelands is made almost entirely of serpentine minerals, which form when large amounts of water react with iron- and magnesium-bearing minerals in igneous rock. During this process, called serpentinization, the rock’s original structure and mineralogy change, often causing it to expand and fracture. Byproducts of the process sometimes include hydrogen gas, which can lead to the generation of methane in the presence of carbon dioxide. On Earth, such rocks can support microbial communities.
      Coring Tablelands went smoothly. But sealing it became an engineering challenge.
      Sealing the “Green Gardens” sample — collected by NASA’s Perseverance Mars rover from a rock dubbed “Tablelands” along the rim of Jezero Crater on Feb. 16, 2025 — pre-sented an engineering challenge. The sample was finally sealed on March 2.NASA/JPL-Caltech/ASU/MSSS Flick Maneuver
      “This happened once before, when there was enough powdered rock at the top of the tube that it interfered with getting a perfect seal,” said Kyle Kaplan, a robotics engineer at JPL. “For Tablelands, we pulled out all the stops. Over 13 sols,” or Martian days, “we used a tool to brush out the top of the tube 33 times and made eight sealing attempts. We even flicked it a second time.”
      During a flick maneuver, the sample handling arm — a little robotic arm in the rover’s belly — presses the tube against a wall inside the rover, then pulls the tube away, causing it to vibrate. On March 2, the combination of flicks and brushings cleaned the tube’s top opening enough for Perseverance to seal and store the serpentine-laden rock sample. 
      Eight days later, the rover had no issues sealing its third rim sample, from a rock called “Main River.” The alternating bright and dark bands on the rock were like nothing the science team had seen before.
      Up Next
      Following the collection of the Main River sample, the rover has continued exploring Witch Hazel Hill, analyzing three more rocky outcrops (“Sally’s Cove,” “Dennis Pond,” and “Mount Pearl”). And the team isn’t done yet.  
      “The last four months have been a whirlwind for the science team, and we still feel that Witch Hazel Hill has more to tell us,” said Stack. “We’ll use all the rover data gathered recently to decide if and where to collect the next sample from the crater rim. Crater rims — you gotta love ’em.”
      More About Perseverance
      A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover is characterizing the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet and is the first mission to collect and cache Martian rock and regolith.
      NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
      The Mars 2020 Perseverance mission is part of NASA’s Mars Exploration Program portfolio and the agency’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
      NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.
      For more about Perseverance:
      https://science.nasa.gov/mission/mars-2020-perseverance
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov  
      2025-051
      Share
      Details
      Last Updated Apr 10, 2025 Related Terms
      Perseverance (Rover) Mars Mars 2020 Explore More
      5 min read Perseverance Rover Witnesses One Martian Dust Devil Eating Another
      Article 7 days ago 6 min read How NASA’s Perseverance Is Helping Prepare Astronauts for Mars
      Article 2 weeks ago 6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
      Lee esta historia en español aquí. Researchers analyzing pulverized rock onboard NASA’s Curiosity rover have found…
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA and SpaceX are launching the company’s 32nd commercial resupply services mission to the International Space Station later this month, bringing a host of new research to the orbiting laboratory. Aboard the SpaceX Dragon spacecraft are experiments focused on vision-based navigation, spacecraft air quality, materials for drug and product manufacturing, and advancing plant growth with less reliance on photosynthesis.
      This and other research conducted aboard the space station advances future space exploration, including missions to the Moon and Mars, and provides many benefits to humanity.
      Investigations traveling to the space station include:
      Robotic spacecraft guidance
      Smartphone Video Guidance Sensor-2 (SVGS-2) uses the space station’s Astrobee robots to demonstrate using a vision-based sensor developed by NASA to control a formation flight of small satellites. Based on a previous in-space demonstration of the technology, this investigation is designed to refine the maneuvers of multiple robots and integrate the information with spacecraft systems.
      Potential benefits of this technology include improved accuracy and reliability of systems for guidance, navigation, and control that could be applied to docking crewed spacecraft in orbit and remotely operating multiple robots on the lunar or Martian surface.
      Two of the space station’s Astrobee robots are used to test a vision-based guidance system for Smartphone Video Guidance Sensor (SVGS)NASA Protection from particles
      During spaceflight, especially long-duration missions, concentrations of airborne particles must be kept within ranges safe for crew health and hardware performance. The Aerosol Monitors investigation tests three different air quality monitors in space to determine which is best suited to protect crew health and ensure mission success. The investigation also tests a device for distinguishing between smoke and dust. Aboard the space station, the presence of dust can cause false smoke alarms that require crew member response. Reducing false alarms could save valuable crew time while continuing to protect astronaut safety.
      Better materials, better drugs
      The DNA Nano Therapeutics-Mission 2 produces a special type of molecule formed by DNA-inspired, customizable building blocks known as Janus base nanomaterials. It also evaluates how well the materials reduce joint inflammation and whether they can help regenerate cartilage lost due to arthritis. These materials are less toxic, more stable, and more compatible with living tissues than current drug delivery technologies.
      Environmental influences such as gravity can affect the quality of these materials and delivery systems. In microgravity, they are larger and have greater uniformity and structural integrity. This investigation could help identify the best formulations and methods for cost-effective in-space production. These nanomaterials also could be used to create novel systems targeting therapy delivery that improves patient outcomes with fewer side effects.
      Stem cells grown along the Janus base nanomaterials (JBNs) made aboard the International Space Station.University of Connecticut Next-generation pharmaceutical nanostructures
      The newest Industrial Crystallization Cassette (ADSEP-ICC) investigation adds capabilities to an existing protein crystallization facility. The cassette can process more sample types, including tiny gold particles used in devices that detect cancer and other diseases or in targeted drug delivery systems. Microgravity makes it possible to produce larger and more uniform gold particles, which improves their use in research and real-life applications of technologies related to human health.
      Helping plants grow
      Rhodium USAFA NIGHT examines how tomato plants respond to microgravity and whether a carbon dioxide replacement can reduce how much space-grown plants depend on photosynthesis. Because photosynthesis needs light, which requires spacecraft power to generate, alternatives would reduce energy use. The investigation also examines whether using supplements increases plant growth on the space station, which has been observed in preflight testing on Earth. In future plant production facilities aboard spacecraft or on celestial bodies, supplements could come from available organic materials such as waste.
      Understanding how plants adapt to microgravity could help grow food during long-duration space missions or harsh environments on Earth.
      Hardware for the Rhodium Plant LIFE, which was the first in a series used to study how space affects plant growth.NASA Atomic clocks in space
      An ESA (European Space Agency) investigation, Atomic Clock Ensemble in Space (ACES), examines fundamental physics concepts such as Einstein’s theory of relativity using two next-generation atomic clocks operated in microgravity. Results have applications to scientific measurement studies, the search for dark matter, and fundamental physics research that relies on highly accurate atomic clocks in space. The experiment also tests a technology for synchronizing clocks worldwide using global navigation satellite networks.
      An artist’s concept shows the Atomic Clock Ensemble in Space hardware mounted on the Earth-facing side of the space station’s exterior.ESA Download high-resolution photos and videos of the research mentioned in this article.
      Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      Latest News from Space Station Research
      Station Benefits for Humanity
      Space Station Research Results
      View the full article
    • By NASA
      Deputy Integration and Testing Manager – Goddard Space Flight Center
      Mike Drury began at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, as a temporary technician — a contractor hired for six weeks to set up High Capacity Centrifuge tests. Six weeks then turned into three months and, eventually, over 40 years.
      Mike Drury, the deputy integration and testing manager for NASA’s Nancy Grace Roman Space Telescope, stands inside a clean room in front of Roman’s primary support structure and propulsion system. The “bunny suit” that he’s wearing protects the telescope from contaminants like dust, hair, and skin.NASA/Chris Gunn Now, Mike is the deputy integration and testing manager for NASA’s Nancy Grace Roman Space Telescope. In this role, Mike oversees both Roman’s assembly and the many verification processes that ensure it is ready for launch.
      “It’s a privilege to work here. There’s really no regrets,” Mike says. “This is a big place, and it is what you make it. You can really spread your wings and go into a lot of different areas and do different things.”
      When Mike first began at Goddard, only government-employed technicians could work on space flight hardware. However, times were changing. The “old-timers,” as Mike affectionately calls them, soon began training a small group of contractors, including Mike, for flight hardware work. Mike credits these “old-timers” for the mindset he still carries decades later.
      “They taught me how to approach things and execute, and that helped me through my entire career,” Mike says. “It’s that approach — making sure things are done right, without cutting any corners — that I always liked about working here.”
      Not everyone can say that they worked on space missions while in college, but Mike can. Mike took advantage of a program through his contract that paid for classes. For 10 years, Mike studied at Anne Arundel Community College while continuing full-time work at Goddard, eventually earning an associate’s degree in mathematics. 
      While in community college, Mike also stocked up on several physics and calculus credits which helped prepare him to study thermal engineering at Johns Hopkins University. After seven more years of night classes, Mike completed a bachelor’s degree in mechanical engineering. 
      “Night school was really difficult between full-time work and traveling because I was working on several missions,” Mike says. “You needed that perseverance to just keep going and working away at it. So I just hung in there.”
      In this 1989 picture, Mike works on NASA’s BBXRT (Broad Band X-ray Telescope) at NASA’s Kennedy Space Center in Florida. BBXRT flew on the space shuttle Columbia in 1990.NASA In his 17 years of night school, Mike worked on seven missions, expanding his skill set from test set-up, to clean room tech work, to training astronauts. While working on the Hubble Space Telescope, Mike helped to train astronauts for their in-orbit tech work to install various instruments. 
      “Every mission I’ve worked on I’ve learned something,” Mike says. “Every test you learn more and more about other disciplines.”
      After graduating from Johns Hopkins, Mike worked for a short time as an engineer before becoming an integration supervisor. In 2006, Mike took on the position of James Webb Space Telescope ISIM (Integrated Science Instrument Module) integration and test manager. After Webb’s ISIM was integrated with the Optical Telescope Element, Mike became the OTIS (Optical Telescope Element and Integrated Science Instrument Module) integration and testing manager.
      “It was a tough eight to 10 years of work,” Mike says. “Loading the OTIS into the shipping container to be sent to NASA’s Johnson Space Center in Houston for further testing was a great accomplishment.” 
      To ensure that Webb’s ISIM would thrive in space, Mike was involved in more than three months of round-the-clock thermal vacuum testing. During this time, a blizzard stranded Mike and others on-site at Goddard for three days. Mike spent his nights overseeing thermal vacuum tests and his days driving test directors and operators to their nearby hotel rooms with his four-wheel-drive truck — a winter storm savior in short supply.
      In this 1992 picture, Mike works alongside another technician on DXS (Diffuse X-Ray Spectrometer) in the shuttle bay at NASA’s Kennedy Space Center in Florida. DXS was a University of Wisconsin-Madison experiment flown during the January 1993 flight of NASA’s Space Shuttle Endeavor.NASA For Mike, the hard work behind space missions is well worth it.
      “As humans, we want to discover new things and see things. That’s what keeps me coming back — the thought of discovery and space flight,” Mike says. “I get excited talking to some of the Hubble or Webb scientists about the discoveries they’ve made. They answer questions but they also find themselves asking new ones.”
      Some of these new questions opened by Hubble and Webb will be addressed by Mike’s current project — Roman.
      “This team I would say is the best I’ve ever worked with. I say that because it’s the Goddard family. Everyone here on Roman has the same agenda, and that’s a successful, on-time launch,” Mike says. “My ultimate goal is to be staying on the beach in Florida after watching Roman blast off. That would be all the icing on the cake.”
      Mike is also focusing on laying the groundwork for the next era at Goddard. He works hard to instill a sense of import, intention, and precision in his successors, just as the “old-timers” instilled in him 40 years ago.
      “I talk to a lot of my colleagues that I’ve worked with for years, and we’re all excited to hand it off to the next generation,” Mike says. “It’s so exciting to see. I’m the old guy now.”
      By Laine Havens
      NASA’s Goddard Space Flight Center
      View the full article
  • Check out these Videos

×
×
  • Create New...