Members Can Post Anonymously On This Site
NASA, Partners to Welcome Fourth Axiom Space Mission to Space Station
-
Similar Topics
-
By European Space Agency
Today in Brussels, the European Space Agency (ESA) and the European Commission consolidated their cooperation on the European Quantum Communication Infrastructure (EuroQCI), marking the successful conclusion of negotiations and clearing the way for development to begin. EuroQCI is an advanced network that aims to protect everything from personal data to Europe's critical infrastructure, using proven principles of quantum physics.
View the full article
-
By NASA
Caption: Illustration of the four PUNCH spacecraft in low Earth orbit. Credit: NASA’s Goddard Space Flight Center Conceptual Image Lab
NASA will hold a media teleconference at 2 p.m. EST on Tuesday, Feb. 4, to share information about the agency’s upcoming PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission, which is targeted to launch no earlier than Thursday, Feb. 27.
The agency’s PUNCH mission is a constellation of four small satellites. When they arrive in low Earth orbit, the satellites will make global, 3D observations of the Sun’s outer atmosphere, the corona, and help NASA learn how the mass and energy there become solar wind. By imaging the Sun’s corona and the solar wind together, scientists hope to better understand the entire inner heliosphere – Sun, solar wind, and Earth – as a single connected system.
Audio of the teleconference will stream live on the agency’s website at:
https://www.nasa.gov/live
Participants include:
Madhulika Guhathakurta, NASA program scientist, NASA Headquarters Nicholeen Viall, PUNCH mission scientist, NASA’s Goddard Space Flight Center Craig DeForest, PUNCH principal investigator, Southwest Research Institute To participate in the media teleconference, media must RSVP no later than 12 p.m. on Feb. 4 to: Abbey Interrante at: abbey.a.interrante@nasa.gov. NASA’s media accreditation policy is available online.
The PUNCH mission will share a ride to space with NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) space telescope on a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California.
The Southwest Research Institute in Boulder, Colorado, leads the PUNCH mission. The mission is managed by the Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington.
To learn more about PUNCH, please visit:
https://nasa.gov/punch
-end-
Karen Fox
Headquarters, Washington
202-358-1600
karen.fox@nasa.gov
Sarah Frazier
Goddard Space Flight Center, Greenbelt, Md.
202-853-7191
sarah.frazier@nasa.gov
View the full article
-
By NASA
A Lysozyme crystal grown in microgravity, viewed under a microscope using X-ray crystallography. NASA Did you know that NASA conducts ground-breaking research in space on materials like metals, foams, and crystals? This research could lead to next-generation technology that both enables deep-space exploration and benefits humanity.
Here are six studies scientists have conducted on the International Space Station that could have profound implications for future space travel and also improve products widely used on Earth:
01 Advancing construction and repairing techniques with liquid metals
Researchers are looking at the effects of microgravity on the liquid metals formed during brazing, a technology used to bond materials at temperatures above 450 degrees Celsius. The Brazing of Aluminum alloys In Space (BRAINS) experiment aboard the International Space Station studies how alloys join with a range of other materials, such as ceramics or other metals.
In space, brazing could be used to construct vehicles, habitats, and other systems needed for space missions, and repair them if damaged. Advanced brazing technologies discovered in space may also be used in the construction and repair of structures on Earth.
02 Improving materials used for high-powered lasers
Another study on the space station is looking at the growth of semiconductor crystals based on Zinc selenide (ZnSe) in microgravity. ZnSe is an important semiconductor used on Earth for optical devices and infrared lasers.
Researchers are investigating the impact of microgravity on the growth of these crystals and comparing the results to those grown on Earth. A better understanding of the impact of microgravity on crystal growth could open the door to expanded commercial use of space.
03 Researching ways to make stronger metal
Metal alloys, which are created by combining two or more metallic elements, are used in everything from hardware to kitchen appliances, automobiles, and even the space station itself. Alloys are created by cooling a liquid metal until it hardens into a solid.
Researchers on the space station are investigating how metal alloys melt and take shape in a controlled microgravity environment. While brazing aims to repair or bond two separate materials, this experiment looks at casting or molding things from liquid metals. In metal castings, the solid grows by forming millions of snowflake-like crystals called dendrites. The shape of the dendrites affects the strength of the metal alloys.
Findings are expected to significantly impact our ability to produce metals with greater strength, for both space and on Earth applications.
04 Exploring stability and mechanics of foams and bubbly liquids
Studying how foams and bubbly liquids evolve in microgravity over time is another important NASA investigation. These experiments will provide guidance for how to control the flow and separation of bubbly liquids. This knowledge is crucial for developing a water recovery and recycling device for future space exploration to Mars.
On Earth, foams are found in everything from food and cosmetics to paper and petroleum. A better understanding of their stability and mechanics is important for creating sustainable, more efficient processes and improved materials.
05 Improving performance and lowering cost of “superglass”
Scientists are conducting experiments on supercooled metal oxides (space soil and rock) to better understand how molten materials can be processed in microgravity. Manufacturing new products in space is critical to long-term efforts to develop habitats in space and on other planets. It will require the use of available resources in space, including soil and rocks.
Data from the research also has far-reaching implications on Earth. It could help improve the performance and lower the cost of materials that are used in the production of cell phone displays, lasers, and glass for automobiles.
06 Advancing 3D printing and manufacturing through “soft matter” research
Space exploration to Mars and beyond will require astronauts to have the ability to build new equipment and materials in space. To make that a reality, space station researchers conducted a number of experiments looking at the behavior of colloids, or “soft matter,” in a microgravity environment.
This research could have a variety of applications on Earth, including the development of chemical energy, improvements to communications technologies, and enhancements to photonic materials used to control and manipulate light.
Related Resources:
Biological and Physical Sciences Investigations Space Station Research Explorer Superglass: The Future of Glass Video NASA’s Biological and Physical Sciences Division pioneers scientific discovery and enables exploration by using space environments to conduct investigations not possible on Earth. Studying biological and physical phenomenon under extreme conditions allows researchers to advance the fundamental scientific knowledge required to go farther and stay longer in space, while also benefitting life on Earth.
View the full article
-
By NASA
In this video frame, Jason Dworkin holds up a vial that contains part of the sample from asteroid Bennu delivered to Earth by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer) mission in 2023. Dworkin is the mission’s project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.Credit: NASA/James Tralie Studies of rock and dust from asteroid Bennu delivered to Earth by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification and Security–Regolith Explorer) spacecraft have revealed molecules that, on our planet, are key to life, as well as a history of saltwater that could have served as the “broth” for these compounds to interact and combine.
The findings do not show evidence for life itself, but they do suggest the conditions necessary for the emergence of life were widespread across the early solar system, increasing the odds life could have formed on other planets and moons.
“NASA’s OSIRIS-REx mission already is rewriting the textbook on what we understand about the beginnings of our solar system,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Asteroids provide a time capsule into our home planet’s history, and Bennu’s samples are pivotal in our understanding of what ingredients in our solar system existed before life started on Earth.”
In research papers published Wednesday in the journals Nature and Nature Astronomy, scientists from NASA and other institutions shared results of the first in-depth analyses of the minerals and molecules in the Bennu samples, which OSIRIS-REx delivered to Earth in 2023.
Detailed in the Nature Astronomy paper, among the most compelling detections were amino acids – 14 of the 20 that life on Earth uses to make proteins – and all five nucleobases that life on Earth uses to store and transmit genetic instructions in more complex terrestrial biomolecules, such as DNA and RNA, including how to arrange amino acids into proteins.
Scientists also described exceptionally high abundances of ammonia in the Bennu samples. Ammonia is important to biology because it can react with formaldehyde, which also was detected in the samples, to form complex molecules, such as amino acids – given the right conditions. When amino acids link up into long chains, they make proteins, which go on to power nearly every biological function.
These building blocks for life detected in the Bennu samples have been found before in extraterrestrial rocks. However, identifying them in a pristine sample collected in space supports the idea that objects that formed far from the Sun could have been an important source of the raw precursor ingredients for life throughout the solar system.
“The clues we’re looking for are so minuscule and so easily destroyed or altered from exposure to Earth’s environment,” said Danny Glavin, a senior sample scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and co-lead author of the Nature Astronomy paper. “That’s why some of these new discoveries would not be possible without a sample-return mission, meticulous contamination-control measures, and careful curation and storage of this precious material from Bennu.”
While Glavin’s team analyzed the Bennu samples for hints of life-related compounds, their colleagues, led by Tim McCoy, curator of meteorites at the Smithsonian’s National Museum of Natural History in Washington, and Sara Russell, cosmic mineralogist at the Natural History Museum in London, looked for clues to the environment these molecules would have formed. Reporting in the journal Nature, scientists further describe evidence of an ancient environment well-suited to kickstart the chemistry of life.
Ranging from calcite to halite and sylvite, scientists identified traces of 11 minerals in the Bennu sample that form as water containing dissolved salts evaporates over long periods of time, leaving behind the salts as solid crystals.
Similar brines have been detected or suggested across the solar system, including at the dwarf planet Ceres and Saturn’s moon Enceladus.
Although scientists have previously detected several evaporites in meteorites that fall to Earth’s surface, they have never seen a complete set that preserves an evaporation process that could have lasted thousands of years or more. Some minerals found in Bennu, such as trona, were discovered for the first time in extraterrestrial samples.
“These papers really go hand in hand in trying to explain how life’s ingredients actually came together to make what we see on this aqueously altered asteroid,” said McCoy.
For all the answers the Bennu sample has provided, several questions remain. Many amino acids can be created in two mirror-image versions, like a pair of left and right hands. Life on Earth almost exclusively produces the left-handed variety, but the Bennu samples contain an equal mixture of both. This means that on early Earth, amino acids may have started out in an equal mixture, as well. The reason life “turned left” instead of right remains a mystery.
“OSIRIS-REx has been a highly successful mission,” said Jason Dworkin, OSIRIS-REx project scientist at NASA Goddard and co-lead author on the Nature Astronomy paper. “Data from OSIRIS-REx adds major brushstrokes to a picture of a solar system teeming with the potential for life. Why we, so far, only see life on Earth and not elsewhere, that’s the truly tantalizing question.”
NASA Goddard provided overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. The university leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft and provided flight operations. NASA Goddard and KinetX Aerospace were responsible for navigating the OSIRIS-REx spacecraft. Curation for OSIRIS-REx takes place at NASA’s Johnson Space Center in Houston. International partnerships on this mission include the OSIRIS-REx Laser Altimeter instrument from CSA (Canadian Space Agency) and asteroid sample science collaboration with JAXA’s (Japan Aerospace Exploration Agency) Hayabusa2 mission. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.
For more information on the OSIRIS-REx mission, visit:
https://www.nasa.gov/osiris-rex
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Rani Gran
Goddard Space Flight Center, Greenbelt, Maryland
301-286-2483
rani.c.gran@nasa.gov
Share
Details
Last Updated Jan 29, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) Asteroids Bennu Goddard Space Flight Center Science Mission Directorate
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A massive hotspot — larger the Earth’s Lake Superior — can be seen just to the right of Io’s south pole in this annotated image taken by the JIRAM infrared imager aboard NASA’s Juno on Dec. 27, 2024, during the spacecraft’s flyby of the Jovian moon. NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM Even by the standards of Io, the most volcanic celestial body in the solar system, recent events observed on the Jovian moon are extreme.
Scientists with NASA’s Juno mission have discovered a volcanic hot spot in the southern hemisphere of Jupiter’s moon Io. The hot spot is not only larger than Earth’s Lake Superior, but it also belches out eruptions six times the total energy of all the world’s power plants. The discovery of this massive feature comes courtesy of Juno’s Jovian Infrared Auroral Mapper (JIRAM) instrument, contributed by the Italian Space Agency.
“Juno had two really close flybys of Io during Juno’s extended mission,” said the mission’s principal investigator, Scott Bolton of the Southwest Research Institute in San Antonio. “And while each flyby provided data on the tormented moon that exceeded our expectations, the data from this latest — and more distant — flyby really blew our minds. This is the most powerful volcanic event ever recorded on the most volcanic world in our solar system — so that’s really saying something.”
The source of Io’s torment: Jupiter. About the size of Earth’s Moon, Io is extremely close to the mammoth gas giant, and its elliptical orbit whips it around Jupiter once every 42.5 hours. As the distance varies, so does the planet’s gravitational pull, which leads to the moon being relentlessly squeezed. The result: immense energy from frictional heating that melts portions of Io’s interior, resulting in a seemingly endless series of lava plumes and ash venting into its atmosphere from the estimated 400 volcanoes that riddle its surface.
Close Flybys
Designed to capture the infrared light (which isn’t visible to the human eye) emerging from deep inside Jupiter, JIRAM probes the gas giant’s weather layer, peering 30 to 45 miles (50 to 70 kilometers) below its cloud tops. But since NASA extended Juno’s mission, the team has also used the instrument to study the moons Io, Europa, Ganymede, and Callisto.
Images of Io captured in 2024 by the JunoCam imager aboard NASA’s Juno show signif-icant and visible surface changes (indicated by the arrows) near the Jovian moon’s south pole. These changes occurred between the 66th and 68th perijove, or the point during Juno’s orbit when it is closest to Jupiter.Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing by Jason Perry During its extended mission, Juno’s trajectory passes by Io every other orbit, flying over the same part of the moon each time. Previously, the spacecraft made close flybys of Io in December 2023 and February 2024, getting within about 930 miles (1,500 kilometers) of its surface. The latest flyby took place on Dec. 27, 2024, bringing the spacecraft within about 46,200 miles (74,400 kilometers) of the moon, with the infrared instrument trained on Io’s southern hemisphere.
Io Brings the Heat
“JIRAM detected an event of extreme infrared radiance — a massive hot spot — in Io’s southern hemisphere so strong that it saturated our detector,” said Alessandro Mura, a Juno co-investigator from the National Institute for Astrophysics in Rome. “However, we have evidence what we detected is actually a few closely spaced hot spots that emitted at the same time, suggestive of a subsurface vast magma chamber system. The data supports that this is the most intense volcanic eruption ever recorded on Io.”
The JIRAM science team estimates the as-yet-unnamed feature spans 40,000 square miles (100,000 square kilometers). The previous record holder was Io’s Loki Patera, a lava lake of about 7,700 square miles (20,000 square kilometers). The total power value of the new hot spot’s radiance measured well above 80 trillion watts.
Picture This
The feature was also captured by the mission’s JunoCam visible light camera. The team compared JunoCam images from the two previous Io flybys with those the instrument collected on Dec. 27. And while these most recent images are of lower resolution since Juno was farther away, the relative changes in surface coloring around the newly discovered hot spot were clear. Such changes in Io’s surface are known in the planetary science community to be associated with hot spots and volcanic activity.
An eruption of this magnitude is likely to leave long-lived signatures. Other large eruptions on Io have created varied features, such as pyroclastic deposits (composed rock fragments spewed out by a volcano), small lava flows that may be fed by fissures, and volcanic-plume deposits rich in sulfur and sulfur dioxide.
Juno will use an upcoming, more distant flyby of Io on March 3 to look at the hot spot again and search for changes in the landscape. Earth-based observations of this region of the moon may also be possible.
“While it is always great to witness events that rewrite the record books, this new hot spot can potentially do much more,” said Bolton. “The intriguing feature could improve our understanding of volcanism not only on Io but on other worlds as well.”
More About Juno
NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft. Various other institutions around the U.S. provided several of the other scientific instruments on Juno.
More information about Juno is available at:
https://www.nasa.gov/juno
News Media Contacts
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Karen Fox / Alana Johnson
NASA Headquarters, Washington
202-358-1600 / 202-358-1501
karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
Deb Schmid
Southwest Research Institute, San Antonio
210-522-2254
dschmid@swri.org
2025-010
Share
Details
Last Updated Jan 28, 2025 Related Terms
Juno Jet Propulsion Laboratory Jupiter Jupiter Moons The Solar System Explore More
4 min read NASA Space Tech’s Favorite Place to Travel in 2025: The Moon!
Article 4 days ago 5 min read NASA JPL Prepping for Full Year of Launches, Mission Milestones
Article 5 days ago 5 min read Study Finds Earth’s Small Asteroid Visitor Likely Chunk of Moon Rock
Article 6 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.