Jump to content

NASA Juno Mission Spots Most Powerful Volcanic Activity on Io to Date


Recommended Posts

  • Publishers
Posted

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A massive hotspot can be seen just to the right of Io’s south pole
A massive hotspot — larger the Earth’s Lake Superior — can be seen just to the right of Io’s south pole in this annotated image taken by the JIRAM infrared imager aboard NASA’s Juno on Dec. 27, 2024, during the spacecraft’s flyby of the Jovian moon.
NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM

Even by the standards of Io, the most volcanic celestial body in the solar system, recent events observed on the Jovian moon are extreme.

Scientists with NASA’s Juno mission have discovered a volcanic hot spot in the southern hemisphere of Jupiter’s moon Io. The hot spot is not only larger than Earth’s Lake Superior, but it also belches out eruptions six times the total energy of all the world’s power plants. The discovery of this massive feature comes courtesy of Juno’s Jovian Infrared Auroral Mapper (JIRAM) instrument, contributed by the Italian Space Agency.

“Juno had two really close flybys of Io during Juno’s extended mission,” said the mission’s principal investigator, Scott Bolton of the Southwest Research Institute in San Antonio. “And while each flyby provided data on the tormented moon that exceeded our expectations, the data from this latest — and more distant — flyby really blew our minds. This is the most powerful volcanic event ever recorded on the most volcanic world in our solar system — so that’s really saying something.”

The source of Io’s torment: Jupiter. About the size of Earth’s Moon, Io is extremely close to the mammoth gas giant, and its elliptical orbit whips it around Jupiter once every 42.5 hours. As the distance varies, so does the planet’s gravitational pull, which leads to the moon being relentlessly squeezed. The result: immense energy from frictional heating that melts portions of Io’s interior, resulting in a seemingly endless series of lava plumes and ash venting into its atmosphere from the estimated 400 volcanoes that riddle its surface.

Close Flybys

Designed to capture the infrared light (which isn’t visible to the human eye) emerging from deep inside Jupiter, JIRAM probes the gas giant’s weather layer, peering 30 to 45 miles (50 to 70 kilometers) below its cloud tops. But since NASA extended Juno’s mission, the team has also used the instrument to study the moons Io, Europa, Ganymede, and Callisto.

Images of Io
Images of Io captured in 2024 by the JunoCam imager aboard NASA’s Juno show signif-icant and visible surface changes (indicated by the arrows) near the Jovian moon’s south pole. These changes occurred between the 66th and 68th perijove, or the point during Juno’s orbit when it is closest to Jupiter.
Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing by Jason Perry

During its extended mission, Juno’s trajectory passes by Io every other orbit, flying over the same part of the moon each time. Previously, the spacecraft made close flybys of Io in December 2023 and February 2024, getting within about 930 miles (1,500 kilometers) of its surface. The latest flyby took place on Dec. 27, 2024, bringing the spacecraft within about 46,200 miles (74,400 kilometers) of the moon, with the infrared instrument trained on Io’s southern hemisphere.

Io Brings the Heat

“JIRAM detected an event of extreme infrared radiance — a massive hot spot — in Io’s southern hemisphere so strong that it saturated our detector,” said Alessandro Mura, a Juno co-investigator from the National Institute for Astrophysics in Rome. “However, we have evidence what we detected is actually a few closely spaced hot spots that emitted at the same time, suggestive of a subsurface vast magma chamber system. The data supports that this is the most intense volcanic eruption ever recorded on Io.”

The JIRAM science team estimates the as-yet-unnamed feature spans 40,000 square miles (100,000 square kilometers). The previous record holder was Io’s Loki Patera, a lava lake of about 7,700 square miles (20,000 square kilometers). The total power value of the new hot spot’s radiance measured well above 80 trillion watts.

Picture This

The feature was also captured by the mission’s JunoCam visible light camera. The team compared JunoCam images from the two previous Io flybys with those the instrument collected on Dec. 27. And while these most recent images are of lower resolution since Juno was farther away, the relative changes in surface coloring around the newly discovered hot spot were clear. Such changes in Io’s surface are known in the planetary science community to be associated with hot spots and volcanic activity.

An eruption of this magnitude is likely to leave long-lived signatures. Other large eruptions on Io have created varied features, such as pyroclastic deposits (composed rock fragments spewed out by a volcano), small lava flows that may be fed by fissures, and volcanic-plume deposits rich in sulfur and sulfur dioxide.

Juno will use an upcoming, more distant flyby of Io on March 3 to look at the hot spot again and search for changes in the landscape. Earth-based observations of this region of the moon may also be possible.  

“While it is always great to witness events that rewrite the record books, this new hot spot can potentially do much more,” said Bolton. “The intriguing feature could improve our understanding of volcanism not only on Io but on other worlds as well.”

More About Juno

NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft. Various other institutions around the U.S. provided several of the other scientific instruments on Juno.

More information about Juno is available at:

https://www.nasa.gov/juno

News Media Contacts

DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov

Karen Fox / Alana Johnson
NASA Headquarters, Washington
202-358-1600 / 202-358-1501
karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov

Deb Schmid
Southwest Research Institute, San Antonio
210-522-2254
dschmid@swri.org

2025-010      

Share

Details

Last Updated
Jan 28, 2025

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s SpaceX Crew-9 Scientific Mission Aboard the Space Station
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Ahead of launch, NASA’s SPHEREx is enclosed in a payload fairing at Vandenberg Space Force Base on March 2. The observatory is stacked atop the four small satellites that make up the agency’s PUNCH mission.NASA/BAE Systems/Benjamin Fry NASA’s latest space observatory is targeting a March 8 liftoff, and the agency’s PUNCH heliophysics mission is sharing a ride. Here’s what to expect during launch and beyond.
      In a little over a day, NASA’s SPHEREx space telescope is slated to launch from Vandenberg Space Force Base in California aboard a SpaceX Falcon 9 rocket. The observatory will map the entire celestial sky four times in two years, creating a 3D map of over 450 million galaxies. In doing so, the mission will provide insight into what happened a fraction of a second after the big bang, in addition to searching interstellar dust for the ingredients of life, and measuring the collective glow from all galaxies, including ones that other telescopes cannot easily detect.
      The launch window opens at 7:09:56 p.m. PST on Saturday, March 8, with a target launch time of 7:10:12 p.m. PST. Additional opportunities occur in the following days.
      Launching together into low Earth orbit, NASA’s SPHEREx and PUNCH missions will study a range of topics from the early universe to our nearest star. NASA/JPL-Caltech Sharing a ride with SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) is NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere), a constellation of four small satellites that will map the region where the Sun’s outer atmosphere, the corona, transitions to the solar wind, the constant outflow of material from the Sun.
      For the latest on PUNCH, visit the blog:
      https://blogs.nasa.gov/punch
      What SPHEREx Will Do
      The SPHEREx observatory detects infrared light — wavelengths slightly longer than what the human eye can see that are emitted by warm objects including stars and galaxies. Using a technique called spectroscopy, SPHEREx will separate the infrared light emitted by hundreds of millions of stars and galaxies into 102 individual colors — the same way a prism splits sunlight into a rainbow. Observing those colors separately can reveal various properties of objects, including their composition and, in the case of galaxies, their distance from Earth. No other all-sky survey has performed spectroscopy in so many wavelengths and on so many sources.
      The mission’s all-sky spectroscopic map can be used for a wide variety of science investigations. In particular, SPHEREx has its sights set on a phenomenon called inflation, which caused the universe to expand a trillion-trillionfold in a fraction of a second after the big bang. This nearly instantaneous event left an impression on the large-scale distribution of matter in the universe. The mission will map the distribution of more than 450 million galaxies to improve scientists’ understanding of the physics behind this extreme cosmic event.
      SPHEREx Fact Sheet Additionally, the space telescope will measure the total glow from all galaxies, including ones that other telescopes cannot easily detect. When combined with studies of individual galaxies by other telescopes, the measurement of this overall glow will provide a more complete picture of how the light output from galaxies has changed over the universe’s history.
      At the same time, spectroscopy will allow SPHEREx to seek out frozen water, carbon dioxide, and other key ingredients for life. The mission will provide an unprecedented survey of the location and abundance of these icy compounds in our galaxy, giving researchers better insight into the interstellar chemistry that set the stage for life.
      Launch Sequence
      But, first, SPHEREx has to get into space. Prelaunch testing is complete on the spacecraft’s various systems, and it’s been encapsulated in the protective nose cone, or payload fairing, atop the SpaceX Falcon 9 rocket that will get it there from Vandenberg’s Space Launch Complex-4 East.
      NASA’s SPHEREx mission will lift off from Space Launch Complex-4 East at Vanden-berg Space Force Base in California aboard a SpaceX Falcon 9 rocket, just as the Sur-face Water and Ocean Topography mission, shown here, did in December 2022. NASA/Keegan Barber A little more than two minutes after the Falcon 9 lifts off, the main engine will cut off. Shortly after, the rocket’s first and second stages will separate, followed by second-stage engine start. The reusable first stage will then begin its automated boost-back burn to the launch site for a propulsive landing.
      Once the rocket is out of Earth’s atmosphere, about three minutes after launch, the payload fairing that surrounds the spacecraft will separate into two halves and fall back to Earth, landing in the ocean. Roughly 41 minutes after launch, SPHEREx will separate from the rocket and start its internal systems so that it can point its solar panel to the Sun. After this happens, the spacecraft can establish communications with ground controllers at NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission for the agency. This milestone, called acquisition of signal, should happen about three minutes after separation.
      About 52 minutes after liftoff, PUNCH should separate as well from the Falcon 9.
      Both spacecraft will be in a Sun-synchronous low Earth orbit, where their position relative to the Sun remains the same throughout the year. Each approximately 98-minute orbit allows the SPHEREx telescope to view a 360-degree strip of the celestial sky. As Earth’s orbit around the Sun progresses, that strip slowly advances, enabling SPHEREx to image almost the entire sky in six months. For PUNCH, the orbit provides a clear view in all directions around the Sun.
      About four days after launch, SPHEREx should eject the protective cover over its telescope lens. The observatory will begin science operations a little over a month after launch, once the telescope has cooled down to its operating temperature and the mission team has completed a series of checks.
      NASA’s Launch Services Program, based out of the agency’s Kennedy Space Center in Florida, is providing the launch service for SPHEREx and PUNCH.
      For more information about the SPHEREx mission, visit:
      https://www.jpl.nasa.gov/missions/spherex
      More About SPHEREx
      SPHEREx is managed by NASA JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters in Washington. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Data will be processed and archived at IPAC at Caltech, which manages JPL for NASA. The mission’s principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive.
      Get the SPHEREx Press Kit How to Watch March 8 SPHEREx Launch 6 Things to Know About SPHEREx Why NASA’s SPHEREx Will Make ‘Most Colorful’ Cosmic Map Ever NASA’s SPHEREX Space Telescope Will Seek Life’s Ingredients News Media Contacts
      Karen Fox / Alise Fisher 
      NASA Headquarters, Washington
      202-358-1600 / 202-358-2546
      karen.c.fox@nasa.gov / alise.m.fisher@nasa.gov
      Calla Cofield, SPHEREx
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      Sarah Frazier, PUNCH
      Goddard Space Flight Center, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      2025-033
      Share
      Details
      Last Updated Mar 07, 2025 Related Terms
      SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Exoplanets Galaxies Heliophysics Jet Propulsion Laboratory Polarimeter to Unify the Corona and Heliosphere (PUNCH) The Big Bang The Milky Way The Search for Life The Sun The Universe Explore More
      5 min read NASA Webb Wows With Incredible Detail in Actively Forming Star System
      High-resolution near-infrared light captured by NASA’s James Webb Space Telescope shows extraordinary new detail and…
      Article 6 hours ago 2 min read Hubble Spies a Spiral in the Water Snake
      This NASA/ESA Hubble Space Telescope image of a vibrant spiral galaxy called NGC 5042 resides…
      Article 8 hours ago 5 min read NASA Turns Off 2 Voyager Science Instruments to Extend Mission
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Intuitive Machines’ IM-2 captured an image March 6, 2025, after landing in a crater from the Moon’s South Pole. The lunar lander is on its side about 820 feet from the intended landing site, Mons Mouton. In the center of the image between the two lander legs is the Polar Resources Ice Mining Experiment 1 suite, which shows the drill deployed.Credit: Intuitive Machines Shortly after touching down inside a crater on the Moon, carrying NASA technology and science on its IM-2 mission, Intuitive Machines collected some data for the agency before calling an early end of mission at 12:15 a.m. CST Friday.
      As part of the company’s second Moon delivery for NASA under the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, the IM-2 mission included a drill to bring lunar soil to the surface and a mass spectrometer to look for the presence of volatiles, or gases, that could one day help provide fuel or breathable oxygen to future Artemis explorers.
      Planned to land at Mons Mouton, IM-2 touched down at approximately 11:30 a.m. March 6, more than 1,300 feet (400 meters) from its intended landing site. Intuitive Machines said images collected later confirmed the lander was on its side, preventing it from fully operating the drill and other instruments before its batteries were depleted.
      The IM-2 mission landed closer to the lunar South Pole than any previous lander.
      “Our targeted landing site near the lunar South Pole is one of the most scientifically interesting, and geographically challenging locations, on the Moon,” said Nicky Fox, associate administrator for science at NASA Headquarters in Washington. “Each success and setback are opportunities to learn and grow, and we will use this lesson to propel our efforts to advance science, exploration, and commercial development as we get ready for human exploration of Mars.”
      The Nova-C lander, named Athena, captured and transmitted images of the landing site before activating the technology and science instruments. Among the data collected, NASA’s PRIME-1 (Polar Resources Ice Mining Experiment 1) suite, which includes the lunar drill known as TRIDENT (The Regolith and Ice Drill for Exploring New Terrain), successfully demonstrated the hardware’s full range of motion in the harsh environment of space. The Mass Spectrometer Observing Lunar Operations (MSOLO) as part of the PRIME-1 suite of instruments, detected elements likely due to the gases emitted from the lander’s propulsion system. 
      “While this mission didn’t achieve all of its objectives for NASA, the work that went into the payload development is already informing other agency and commercial efforts,” said Clayton Turner, associate administrator for space technology, NASA Headquarters. “As we continue developing new technologies to support exploration of the Moon and Mars, testing technologies in-situ is crucial to informing future missions. The CLPS initiative remains an instrumental method for achieving this.”
      Despite the lander’s configuration, Intuitive Machines, which was responsible for launch, delivery, and surface operations under its CLPS contract, was able to complete some instrument checkouts and collect 250 megabytes of data for NASA.
      “Empowering American companies to deliver science and tech to the Moon on behalf of NASA both produces scientific results and continues development of a lunar economy,” said Joel Kearns, deputy associate administrator for Exploration in the Science Mission Directorate at NASA Headquarters. “While we’re disappointed in the outcome of the IM-2 mission, we remain committed to supporting our commercial vendors as they navigate the very difficult task of landing and operating on the Moon.”
      NASA’s Laser Retroreflector Array, a passive instrument meant to provide a reference point on the lunar surface and does not power on, will remain affixed to the top deck of the lander. Although Intuitive Machines’ Nova-C Hopper and Nokia’s 4G/LTE Tipping Point technologies, funded in part by NASA, were only able to complete some objectives, they provided insight into maturing technologies ready for infusion into a commercial space application including some checkouts in flight and on the surface.
      Intuitive Machines’ IM-2 mission launched at 6:16 p.m., Feb. 26, aboard a SpaceX Falcon 9 rocket from Launch Complex 39A at the agency’s Kennedy Space Center in Florida.
      Intuitive Machines has two more deliveries on the books for NASA in the future, with its IM-3 mission slated for 2026, and IM-4 mission in 2027.
      To date, five vendors have been awarded a total of 11 lunar deliveries under CLPS and are sending more than 50 instruments to various locations on the Moon, including the Moon’s far side and South Pole region. CLPS contracts are indefinite-delivery/indefinite-quantity contracts with a cumulative maximum contract value of $2.6 billion through 2028.
      Learn more about NASA’s CLPS initiative at:
      https://www.nasa.gov/clps
      -end-
      Cheryl Warner / Jasmine Hopkins
      Headquarters, Washington
      202-358-1600
      cheryl.m.warner@nasa.gov / jasmine.s.hopkins@nasa.gov
      Natalia Riusech / Nilufar Ramji
      Johnson Space Center, Houston
      281-483-5111
      nataila.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
      Share
      Details
      Last Updated Mar 07, 2025 LocationNASA Headquarters Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Earth's Moon Science & Research Science Mission Directorate Space Technology Mission Directorate View the full article
    • By NASA
      Credit: NASA NASA is seeking design ideas from global creators for a zero gravity indicator that will fly aboard the agency’s Artemis II test flight. Zero gravity indicators are small, plush items carried aboard spacecraft to provide a visual indication of when the spacecraft and its crew reach space.
      This opportunity, with a submission deadline of May 27, asks for original designs representing the significance of NASA’s Artemis campaign, the mission, or exploration and discovery, and meet specific requirements for materials and size.
      “What better way to fly a mission around the Moon than to invite the public inside NASA’s Orion spacecraft with us and ask for help in designing our zero gravity indicator?” asked Reid Wiseman, NASA astronaut and Artemis II commander, at the agency’s Johnson Space Center in Houston. “The indicator will float alongside Victor, Christina, Jeremy, and me as we go around the far side of the Moon and remind us of all of you back on Earth.”
      Up to 25 finalists, including from a K-12 student division, will be selected. The Artemis II crew will choose one design that NASA’s Thermal Blanket Lab will fabricate to fly alongside them in Orion. Imagine seeing your creation floating weightlessly with astronauts on their way around the Moon.
      For complete contest details, visit:
      http://www.freelancer.com/moon-mascot
      Crowdsourcing company Freelancer is hosting the challenge, called Moon Mascot: NASA Artemis II ZGI Design Contest, on behalf of the agency through the NASA Tournament Lab, managed by the agency’s Space Technology Mission Directorate.
      NASA has a long history of flying zero gravity indicators for human spaceflight missions. Many missions to the International Space Station include a plush item. A plush Snoopy rode inside Orion during NASA’s uncrewed Artemis I mission.
      Artemis II will be the first test flight of the Space Launch System rocket, Orion spacecraft, and supporting ground system with crew aboard. NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen will venture around the Moon and back. The mission is the first crewed flight under NASA’s Artemis campaign and is another step toward missions on the lunar surface and helping the agency prepare for future human missions to Mars.
      All major elements for Artemis II are readying for flight. Engineers recently completed stacking the twin solid rocket boosters for the SLS (Space Launch System) on their launch platform and are preparing for integration of the SLS core stage in the coming weeks. Teams also recently installed the solar array wings on the Orion spacecraft that will carry the four astronauts on their journey around the Moon and home.
      Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
      Learn more about Artemis II at:
      https://www.nasa.gov/mission/artemis-ii/
      -end-
      Rachel Kraft
      Headquarters, Washington
      202-358-1600
      rachel.h.kraft@nasa.gov
      Courtney Beasley
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov
      Share
      Details
      Last Updated Mar 07, 2025 LocationNASA Headquarters Related Terms
      Humans in Space Artemis 2 Astronauts Johnson Space Center NASA Headquarters
      View the full article
    • By Space Force
      The Space Force landed the X-37B at Vandenberg Space Force Base, California, to exercise its rapid ability to launch and recover its systems across multiple sites. X-37B’s Mission 7 was the first launch on a SpaceX Falcon Heavy Rocket to a Highly Elliptical Orbit.

      View the full article
  • Check out these Videos

×
×
  • Create New...