Members Can Post Anonymously On This Site
Secretary of Defense Pete Hegseth Begins 'Most Important Deployment of My Life'
-
Similar Topics
-
By Space Force
Defense Secretary Pete Hegseth signed a memorandum to all Defense Department civilian employees directing them to prepare five bullet points detailing their work accomplishments from the prior week.
View the full article
-
By NASA
On Feb. 28, 1990, space shuttle Atlantis took off from NASA’s Kennedy Space Center in Florida on STS-36, the sixth shuttle mission dedicated to the Department of Defense. As such, many of the details of the flight remain classified. The mission marked the 34th flight of the space shuttle, the sixth for Atlantis, and the fourth night launch of the program. The crew of Commander John Creighton, Pilot John Casper, Mission Specialists Mike Mullane, David Hilmers, and Pierre Thuot flew Atlantis to the highest inclination orbit of any human spaceflight to date. During the four-day mission, the astronauts deployed a classified satellite, ending with a landing at Edwards Air Force Base in California.
The STS-36 crew, from left, was Mission Specialist Pierre Thuot, left, Pilot John Casper, Commander John Creighton, and Mission Specialists Mike Mullane and David Hilmers.NASA The STS-36 crew patch. NASA In February 1989, NASA assigned astronauts Creighton, Casper, Mullane, Hilmers, and Thuot to the STS-36 mission. The mission marked the second spaceflight for Creighton, selected as an astronaut in 1978. He previously served as the pilot on STS-51G. Mullane, also from the class of 1978, previously flew on STS-41D and STS-27, while Hilmers, from the class of 1980, previously flew on STS-51J and STS-26. For Casper and Thuot, selected as astronauts in the classes of 1984 and 1985, respectively, STS-36 marked their first trip into space.
The STS-36 crew poses outside the crew compartment trainer at NASA’s Johnson Space Center in Houston. NASA Space shuttle Atlantis during the rollout to Launch Pad 39A at NASA’s Kennedy Space Center in Florida.NASA The STS-36 crew participates in a simulation.NASA STS-36 Commander John Creighton and Pilot John Casper in the shuttle simulator. NASA The STS-36 crew exits crew quarters for the ride to Launch Pad 39A.NASA Atlantis returned from its previous flight, STS-34, in October 1989. The orbiter spent a then-record 75 days in the processing facility and assembly building, rolling out to Launch Pad 39A on Jan. 25, 1990. The astronauts arrived on Feb. 18 for the planned launch four days later. First Creighton, then Casper and Hilmers, came down with colds, delaying the launch to Feb. 25. Weather and hardware problems pushed the launch back to Feb. 28, giving the astronauts time to return to Houston for some simulator training. On launch day, winds and rain delayed the liftoff for more than two hours before launch controllers gave Atlantis the go to launch.
Liftoff of space shuttle Atlantis on STS-36. NASA With mere seconds remaining in the launch window, Atlantis lifted off at 2:50 a.m. EST Feb. 28, to begin the STS-36 mission. Atlantis flew an unusual dog leg maneuver during ascent to achieve the mission’s 62-degree inclination. Once Atlantis reached orbit, the classified nature prevented any more detailed public coverage of the mission. The astronauts likely deployed the classified satellite on the mission’s second day. During the remainder of their mission, the astronauts conducted several experiments and photographed preselected areas and targets of opportunity on planet Earth. Their high-inclination orbit enabled them to photograph areas not usually seen by shuttle crews.
In-flight photo of the STS-36 crew on Atlantis’ flight deck.NASA STS-36 crew members David Hilmers, left, Pierre Thuot, and John Casper work in the shuttle’s middeck. NASA Mission Specialist Mike Mullane takes photographs from Atlantis’ flight deck.NASA
A selection of crew Earth observation photographs from STS-36. The coast of Greenland.NASA New York City at night.NASA The Nile River including Cairo and the Giza pyramidsNASA The coast of Antarctica. NASA John Creighton prepares drink bags for prelanding hydration. NASA Atlantis touches down at Edwards Air Force Base in California. NASA NASA officials greet the STS-36 astronauts as they exit Atlantis.NASA To maintain the mission’s confidentiality, NASA could reveal the touchdown time only 24 hours prior to the event. On March 4, Creighton and Casper brought Atlantis to a smooth landing at Edwards Air Force Base after 72 orbits of the Earth and a flight of four days, 10 hours, and 18 minutes. About an hour after touchdown, the astronaut crew exited Atlantis for the ride to crew quarters and the flight back to Houston. Later in the day, ground crews prepared Atlantis for the ferry ride back to Kennedy. Atlantis left Edwards on March 10 and three days later arrived at Kennedy, where workers began to prepare it for its next flight, STS-38 in November 1990.
Explore More
14 min read 40 Years Ago: STS-4, Columbia’s Final Orbital Flight Test
Article 3 years ago 6 min read 40 Years Ago: STS-51C, the First Dedicated Department of Defense Shuttle Mission
Article 1 month ago 18 min read 40 Years Ago: NASA Selects its 10th Group of Astronauts
Article 9 months ago View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
That’s a great question. And it’s a question that NASA will seek to answer with the Europa Clipper spacecraft.
Europa is a moon of Jupiter. It’s about the same size as Earth’s Moon, but its surface looks very different. The surface of Europa is covered with a layer of ice, and below that ice, we think there’s a layer of liquid water with more water than all of Earth’s oceans combined.
So because of this giant ocean, we think that Europa is actually one of the best places in the solar system to look for life beyond the Earth.
Life as we know it has three main requirements: liquid water — all life here on Earth uses liquid water as a basis.
The second is the right chemical elements. These are elements like carbon, hydrogen, nitrogen, oxygen, phosphorus, sulfur. They’re elements that create the building blocks for life as we know it on Earth. We think that those elements exist on Europa.
The third component is an energy source. As Europa orbits around Jupiter, Jupiter’s strong gravity tugs and pulls on it. It actually stretches out the surface. And it produces a heat source called tidal heating. So it’s possible that hydrothermal systems could exist at the bottom of Europa’s ocean, and it’s possible that those could be locations for abundant life.
So could there be life on Europa? It’s possible. And Europa Clipper is going to explore Europa to help try to answer that question.
[END VIDEO TRANSCRIPT]
Full Episode List
Full YouTube Playlist
Share
Details
Last Updated Feb 25, 2025 Related Terms
Science Mission Directorate Astrobiology Europa Europa Clipper Planetary Science Planetary Science Division The Solar System Explore More
2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon
Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the…
Article 2 hours ago 4 min read NASA: New Study on Why Mars is Red Supports Potentially Habitable Past
Article 5 hours ago 4 min read Five Facts About NASA’s Moon Bound Technology
Article 16 hours ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Credit: NASA NASA has selected SpaceX of Starbase, Texas, to provide launch services for the Near-Earth Object (NEO) Surveyor mission, which will detect and observe asteroids and comets that could potentially pose an impact threat to Earth.
The firm fixed price launch service task order is being awarded under the indefinite delivery/indefinite quantity NASA Launch Services II contract. The total cost to NASA for the launch service is approximately $100 million, which includes the launch service and other mission related costs. The NEO Surveyor mission is targeted to launch no earlier than September 2027 on a SpaceX Falcon 9 rocket from Florida.
The NEO Surveyor mission consists of a single scientific instrument: an almost 20-inch (50-centimeter) diameter telescope that will operate in two heat-sensing infrared wavelengths. It will be capable of detecting both bright and dark asteroids, the latter being the most difficult type to find with existing assets. The space telescope is designed to help advance NASA’s planetary defense efforts to discover and characterize most of the potentially hazardous asteroids and comets that come within 30 million miles of Earth’s orbit. These are collectively known as near-Earth objects, or NEOs.
The mission will carry out a five-year baseline survey to find at least two-thirds of the unknown NEOs larger than 140 meters (460 feet). These are the objects large enough to cause major regional damage in the event of an Earth impact. By using two heat-sensitive infrared imaging channels, the telescope can also make more accurate measurements of the sizes of NEOs and gain information about their composition, shapes, rotational states, and orbits.
The mission is tasked by NASA’s Planetary Science Division within the agency’s Science Mission Directorate at NASA Headquarters in Washington. Program oversight is provided by NASA’s Planetary Defense Coordination Office, which was established in 2016 to manage the agency’s ongoing efforts in planetary defense. NASA’s Planetary Missions Program Office at the agency’s Marshall Space Flight Center in Huntsville, Alabama, provides program management for NEO Surveyor. The project is being developed by NASA’s Jet Propulsion Laboratory in Southern California.
Multiple aerospace and engineering companies are contracted to build the spacecraft and its instrumentation, including BAE Systems SMS (Space & Mission Systems), Space Dynamics Laboratory, and Teledyne. The Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder, will support operations, and the Infrared Processing and Analysis Center at the California Institute of Technology (Caltech) in Pasadena, California, is responsible for processing survey data and producing the mission’s data products. Caltech manages JPL for NASA. Mission team leadership includes the University of California, Los Angeles. NASA’s Launch Services Program at the agency’s Kennedy Space Center in Florida is responsible for managing the launch service.
For more information about NEO Surveyor, visit:
https://science.nasa.gov/mission/neo-surveyor/
-end-
Tiernan Doyle / Joshua Finch
Headquarters, Washington
202-358-1600 / 202-358-1100
tiernan.doyle@nasa.gov / joshua.a.finch@nasa.gov
Patti Bielling
Kennedy Space Center, Florida
321-501-7575
patricia.a.bielling@nasa.gov
Share
Details
Last Updated Feb 21, 2025 LocationNASA Headquarters Related Terms
Kennedy Space Center Launch Services Office Launch Services Program NEO Surveyor (Near-Earth Object Surveyor Space Telescope) Planetary Defense Coordination Office Planetary Science Division Science Mission Directorate Space Operations Mission Directorate View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.