Jump to content

NASA Invites Media to Expedition 71 Crew Visit at Marshall


Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

The official Expedition 71 crew portrait with (bottom row from left) Roscosmos cosmonaut Alexander Grebenkin and NASA astronauts Mike Barratt, Matthew Dominick, and Jeanette Epps. In the back row (from left) are, NASA astronaut Tracy C. Dyson and Roscosmos cosmonauts Nikolai Chub and Oleg Kononenko.
The official Expedition 71 crew portrait with (bottom row from left) Roscosmos cosmonaut Alexander Grebenkin and NASA astronauts Mike Barratt, Matthew Dominick, and Jeanette Epps. In the back row (from left) are, NASA astronaut Tracy C. Dyson and Roscosmos cosmonauts Nikolai Chub and Oleg Kononenko. Four of the crew members – Dominick, Barratt, Epps, and Dyson – will discuss their recent missions to the International Space Station during a visit at NASA’s Marshall Space Flight Center on Jan 29.
NASA

NASA will host four astronauts at 9 a.m. CDT Wednesday, Jan. 29, for a media opportunity at the agency’s Marshall Space Flight Center in Huntsville, Alabama.

NASA astronauts Matt Dominick, Mike Barratt, Jeanette Epps, and Tracy C. Dyson served as part of Expedition 71 and will discuss their recent missions to the International Space Station.

Dominick, Barratt, and Epps launched aboard NASA’s SpaceX Crew-8 mission in March 2024 and returned to Earth in October 2024 after spending nearly eight months aboard the orbiting complex. Dyson launched aboard a Roscosmos Soyuz spacecraft also in March 2024 and returned in September 2024 after completing a six-month research mission aboard the space station.

Media are invited to attend the event and visit with the astronauts as they discuss their science missions aboard the microgravity laboratory and other mission highlights. Media interested in participating must confirm their attendance by 12 p.m., Monday, Jan. 27, to Joel Wallace in Marshall’s Office of Communications at joel.w.wallace@nasa.gov or 256-786-0117.

Media must arrive by 8 a.m., Wednesday, to the Redstone Arsenal Joint Visitor Control Center Gate 9 parking lot, located at the Interstate 565 interchange on Research Park Boulevard. The event will take place in the NASA Marshall Activities Building 4316. Vehicles are subject to a security search at the gate, so please allow extra time. All members of the media and drivers will need photo identification. Drivers will need proof of insurance if requested.

The Expedition 71 crew conducted hundreds of technology demonstrations and science experiments, including the bioprinting of human tissues. These higher-quality tissues printed in microgravity could help advance the production of organs and tissues for transplant and improve 3D printing of foods and medicines on future long-duration space missions. The crew also looked at  neurological organoids, created with stem cells from patients to study neuroinflammation, a common feature of neurodegenerative conditions such as Parkinson’s disease. The organoids provided a platform to study these diseases and their treatments and could help address how extended spaceflight affects the brain.

As part of Crew-8, Dominick served as commander, Barratt served as pilot, and Epps served as a mission specialist. Dyson launched aboard a Soyuz space as part of an international crew and served as a flight engineer on a six-month research mission. The expedition to the space station was the first spaceflight for Dominick, third for Barratt, first for Epps, and third for Dyson.

The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 24 years, NASA has supported a continuous human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human

Learn more about the International Space Station, its research, and its crew, at:

https://www.nasa.gov/station

Joel Wallace
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
joel.w.wallace@nasa.gov

Share

Details

Last Updated
Jan 24, 2025
Editor
Beth Ridgeway

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      From left, NASA astronauts, Tracy C. Dyson, Mike Barratt, Matthew Dominick, and Jeanette Epps, who served as part of Expedition 71, will discuss their recent missions to the International Space Station during a visit to Marshall Space Flight Center on Jan. 29. NASA NASA will host four astronauts at 9 a.m. CDT Wednesday, Jan. 29, for a media opportunity at the agency’s Marshall Space Flight Center in Huntsville, Alabama.
      NASA astronauts Matt Dominick, Mike Barratt, Jeanette Epps, and Tracy C. Dyson served as part of Expedition 71 and will discuss their recent missions to the International Space Station.
      Dominick, Barratt, and Epps launched aboard NASA’s SpaceX Crew-8 mission in March 2024 and returned to Earth in October 2024 after spending nearly eight months aboard the orbiting complex. Dyson launched aboard a Roscosmos Soyuz spacecraft also in March 2024 and returned in September 2024 after completing a six-month research mission aboard the space station.
      Media are invited to attend the event and visit with the astronauts as they discuss their science missions aboard the microgravity laboratory and other mission highlights. Media interested in participating must confirm their attendance by 12 p.m., Monday, Jan. 27, to both Lance D. Davis – lance.d.davis@nasa.gov – and Joel Wallace – joel.w.wallace@nasa.gov –  in Marshall’s Office of Communications. 
      Media must arrive by 8 a.m., Wednesday, to the Redstone Arsenal Joint Visitor Control Center Gate 9 parking lot, located at the Interstate 565 interchange on Research Park Boulevard. The event will take place in the NASA Marshall Activities Building 4316. Vehicles are subject to a security search at the gate, so please allow extra time. All members of the media and drivers will need photo identification. Drivers will need proof of insurance if requested.
      The Expedition 71 crew conducted hundreds of technology demonstrations and science experiments, including the bioprinting of human tissues. These higher-quality tissues printed in microgravity could help advance the production of organs and tissues for transplant and improve 3D printing of foods and medicines on future long-duration space missions. The crew also looked at  neurological organoids, created with stem cells from patients to study neuroinflammation, a common feature of neurodegenerative conditions such as Parkinson’s disease. The organoids provided a platform to study these diseases and their treatments and could help address how extended spaceflight affects the brain.
      As part of Crew-8, Dominick served as commander, Barratt served as pilot, and Epps served as a mission specialist. Dyson launched aboard a Soyuz space as part of an international crew and served as a flight engineer on a six-month research mission. The expedition to the space station was the first spaceflight for Dominick, third for Barratt, first for Epps, and third for Dyson.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 24 years, NASA has supported a continuous human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human 
      Learn more about the International Space Station, its research, and its crew, at:
      https://www.nasa.gov/station
      Lance D. Davis
      Marshall Space Flight Center, Huntsville, Ala.
      256-640-9065
      lance.d.davis@nasa.gov
      Joel Wallace
      Marshall Space Flight Center, Huntsville, Ala.
      256-786-0117
      joel.w.wallace@nasa.gov
      Share
      Details
      Last Updated Jan 24, 2025 EditorBeth Ridgeway Related Terms
      Marshall Space Flight Center Explore More
      5 min read Exoplanets Need to Be Prepared for Extreme Space Weather, Chandra Finds
      Article 1 week ago 4 min read NASA Instrument on Firefly’s Blue Ghost Lander to Study Lunar Interior
      Article 2 weeks ago 3 min read NASA to Test Solution for Radiation-Tolerant Computing in Space
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Caption: As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Intuitive Machines’ second delivery to the Moon will carry NASA technology demonstrations and science investigations on their Nova-C class lunar lander. Credit: Intuitive Machines For the second time, Intuitive Machines will launch a lunar lander to deliver NASA technology demonstrations and science investigations to the Moon for the benefit of all. Media accreditation is open for the IM-2 launch, part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term presence on the Moon. 

      The Intuitive Machines Nova-C class lunar lander will launch on a SpaceX Falcon 9 rocket and carry NASA science, technology demonstrations, and other commercial payloads to Mons Mouton, a lunar plateau near the Moon’s South Pole region. Liftoff is targeted for a multi-day launch window, which opens no earlier than late February, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

      Media prelaunch and launch activities will take place at NASA Kennedy and are open to U.S. citizens and international media. U.S. media must apply by Wednesday, Feb. 12, and international media must apply by Wednesday, Feb. 5.

      Media wishing to take part in person must apply for credentials at:
      https://media.ksc.nasa.gov

      Credentialed media will receive a confirmation email upon approval. NASA’s media accreditation policy is available online. For questions about accreditation or to request special logistical support, such as space for satellite trucks, tents, or electrical connections, please email by Wednesday, Feb. 12, to: ksc-media-accreditat@mail.nasa.gov. For other questions, please contact NASA Kennedy’s newsroom at: 321-867-2468.

      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov.

      Among the items on its lander, the IM-2 mission will deliver one of the first on-site, or in-situ, demonstrations of resource utilization on the Moon, using a drill and mass spectrometer to measure the volatiles content of subsurface materials. Other technology instruments on this delivery will demonstrate a robust surface communications system and deploy a propulsive drone mobility solution.

      Launching as a rideshare alongside the IM-2 delivery NASA’s Lunar Trailblazer spacecraft also will begin its journey to lunar orbit, where it will map the distribution of the different forms of water on the Moon.

      A successful landing will help support the CLPS model for commercial payload deliveries to the lunar surface, as another step toward a sustainable lunar future. As a primary customer of CLPS, NASA is investing in lower-cost methods of Moon deliveries and is one of multiple customers for these flights.

      NASA is working with several U.S. companies to deliver science and technology to the lunar surface through the agency’s CLPS initiative. This pool of companies may bid on task orders to deliver NASA payloads to the Moon. Contract awards cover end-to-end commercial payload delivery services, including payload integration, mission operations, launch from Earth, and landing on the surface of the Moon. These contracts are indefinite-delivery/indefinite-quantity contracts with a cumulative maximum value of $2.6 billion through 2028.

      For more information about the agency’s Commercial Lunar Payload Services initiative, see:
      https://www.nasa.gov/clps
      -end-

      Alise Fisher / Jasmine Hopkins
      Headquarters, Washington
      202-358-1600
      alise.m.fisher@nasa.gov / jasmine.s.hopkins@nasa.gov

      Natalia Riusech / Nilufar Ramji
      Johnson Space Center, Houston
      281-483-5111
      natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov  

      Antonia Jaramillo
      Kennedy Space Center, Florida
      321-867-2468
      antonia.jaramillobotero@nasa.gov
      Share
      Details
      Last Updated Jan 24, 2025 LocationJohnson Space Center Related Terms
      Missions Artemis Commercial Lunar Payload Services (CLPS) View the full article
    • By NASA
      Jason Dworkin, project scientist for OSIRIS-REx at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, views a portion of the asteroid Bennu sample in the center’s astrobiology lab under microscope in November 2023, shortly after it arrived from the curation team at the agency’s Johnson Space Center in Houston.Credit: NASA/Molly Wasser NASA will brief media at 11 a.m. EST Wednesday, Jan. 29, to provide an update on science results from NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer) mission, which delivered a sample of asteroid Bennu to Earth in September 2023.
      Audio of the media call will stream live on the agency’s website.
      Participants in the teleconference include:
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters, Washington Danny Glavin, senior scientist for sample return, NASA’s Goddard Space Flight Center Greenbelt, Maryland Jason Dworkin, OSIRIS-REx project scientist, NASA Goddard Tim McCoy, curator of meteorites, Smithsonian Natural History Museum, Washington  Sara Russell, cosmic mineralogist, Natural History Museum, London Media interested in participating by phone must RSVP no later than two hours prior to the start of the call to: molly.l.wasser@nasa.gov. A copy of NASA’s media accreditation policy is online.
      After the teleconference, NASA Goddard will host a limited onsite media availability for reporters local to the greater Washington area. The availability will include opportunities to tour the center’s astrobiology lab, which contributed to the study of the Bennu sample. Interested reporters should request participation by Sunday, Jan. 26, to: rob.garner@nasa.gov.
      Launched on Sept. 8, 2016, OSIRIS-REx was the first U.S. mission to collect a sample from an asteroid in space. The spacecraft traveled to near-Earth asteroid Bennu and collected a sample of rocks and dust from the surface in 2020. It delivered the sample to Earth on Sept. 24, 2023.
      To learn more about OSIRIS-REx, visit:
      https://science.nasa.gov/mission/osiris-rex/
      -end-
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Share
      Details
      Last Updated Jan 24, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) Asteroids Bennu Goddard Space Flight Center Johnson Space Center Near-Earth Asteroid (NEA) Planetary Science Division Science Mission Directorate View the full article
    • By NASA
      NASA JPL is readying for, clockwise from lower right, the launches of CADRE (its engineering models are seen here), Lunar Trailblazer, NISAR (seen in an artist’s concept), Sentinel-6B (artist’s concept), and SPHEREx, as well as the Mars gravity assist of Europa Clipper (artist’s concept).NASA/JPL-Caltech/BAE Systems/Lockheed Martin Space Missions will study everything from water on the Moon to the transformation of our universe after the big bang and ongoing changes to Earth’s surface.
      With 2024 receding into the distance, NASA’s Jet Propulsion Laboratory is already deep into a busy 2025. Early in the new year, the Eaton Fire came close to JPL, destroying the homes of more than 200 employees, but work has continued apace to maintain mission operations and keep upcoming missions on track.
      Several missions managed by NASA JPL are prepping for launch this year. Most have been years in the making and launches are, of course, only part of the bigger picture. Other milestones are also on the docket for the federal laboratory, which Caltech manages for NASA.
      Here’s a glimpse of what lies ahead this year.
      Mysterious Universe
      Shaped like the bell of a trumpet and as big as a subcompact car, NASA’s SPHEREx space observatory is aiming for the stars. Known formally as the Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer, the mission will create four 3D maps of the entire sky in order to improve humanity’s understanding of the universe — how it expanded after the big bang, where ingredients of life can be found in ice grains, and much more. Target launch date: no earlier than Feb. 27 from Vandenberg Space Force Base in California.
      The Moon’s Icy Secrets
      NASA’s Lunar Trailblazer aims to help resolve an enduring mystery: Where is the Moon’s water? Scientists have seen signs suggesting it exists even where temperatures soar on the lunar surface, and there’s good reason to believe it can be found as surface ice in permanently shadowed craters, places that have not seen direct sunlight for billions of years. Managed by NASA JPL and led by Caltech, the small satellite will help provide answers, mapping the Moon’s surface water in unprecedented detail to determine the water’s abundance, location, form, and how it changes over time. The small satellite will hitch a ride, slated for late February, on the same launch as the Intuitive Machines-2 delivery to the Moon through NASA’s CLPS (Commercial Lunar Payload Services) initiative.
      Earth’s Changing Surface
      A collaboration between the United States and India, NISAR is a major addition to the fleet of satellites studying our changing planet. Short for NASA-Indian Space Research Organisation Synthetic Aperture Radar, the mission’s name is a nesting doll of acronyms, and the spacecraft is a nesting doll of capabilities: The first spacecraft to carry both L-band and S-band radars, it will see surface changes related to volcanoes, earthquakes, ice sheet motion, deforestation, and more in unprecedented detail after it launches in a few months’ time.
      Sea Level
      Targeting a November launch, Sentinel-6B will provide global sea surface height measurements — some of the most accurate data of its kind yet — that will improve climate models and hurricane tracking, as well as our understanding of phenomena like El Niño. A collaboration between NASA and ESA (European Space Agency), the spacecraft will take the baton from its twin, Sentinel-6 Michael Freilich, which launched in 2020. Together, the satellites are extending for another 10 years a nearly three-decade record of global sea surface height.
      Moon Rover Trio
      As a technology demonstration, the CADRE (Cooperative Autonomous Distributed Robotic Exploration) project marks another step NASA is taking toward developing robots that, by operating autonomously, can boost the efficiency of future missions. The project team at JPL will soon be packing up and shipping CADRE’s three suitcase-size rovers to Texas in preparation for their journey to the Moon aboard a commercial lander through one of NASA’s future CLPS deliveries. The rovers are designed to work together as a team without direct input from mission controllers back on Earth. And, by taking simultaneous measurements from multiple locations, they are meant to show how multirobot missions could enable new science and support astronauts.
      Quantum Technology
      Having arrived at the International Space Station in November, SEAQUE (Space Entanglement and Annealing QUantum Experiment) is testing two technologies that, if successful, could enable communication using entangled photons between two quantum systems. The research from this experiment, which gets underway in 2025, could help develop the building blocks for a future global quantum network that would allow equipment such as quantum computers to transfer data securely across large distances.
      Gravity Assist to Reach Jupiter
      Launched this past October, Europa Clipper will arrive at Jupiter in 2030 to investigate whether an ocean beneath the ice shell of the gas giant’s moon Europa has conditions suitable for life. The spacecraft will travel 1.8 billion miles (2.9 billion kilometers) to reach its destination. Since there are limitations on how much fuel the spacecraft can carry, mission planners are having Europa Clipper fly by Mars on March 1, using the planet’s gravity as a slingshot to add speed to its journey.
      For more about NASA missions JPL supports, go to:
      https://www.jpl.nasa.gov/missions/
      Meet SPHEREx, NASA’s newest cosmic mapper How NISAR will track Earth’s changing surface CADRE’s mini-rovers will team up to explore the Moon Instruments deployed, Europa Clipper is Mars-bound News Media Contact
      Matthew Segal
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-8307
      matthew.j.segal@jpl.nasa.gov
      2025-008
      Share
      Details
      Last Updated Jan 23, 2025 Related Terms
      Jet Propulsion Laboratory Explore More
      5 min read Study Finds Earth’s Small Asteroid Visitor Likely Chunk of Moon Rock
      Article 1 day ago 5 min read How New NASA, India Earth Satellite NISAR Will See Earth
      Article 2 days ago 4 min read NASA Scientists, Engineers Receive Presidential Early Career Awards 
      Article 6 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Equipped with state-of-the-art technology to test and evaluate communication, navigation, and surveillance systems NASA’s Pilatus PC-12 performs touch-and-go maneuvers over a runway at NASA’s Armstrong Flight Research Center in Edwards, California on Sept. 23, 2024. Researchers will use the data to understand Automatic Dependent Surveillance-Broadcast (ADS-B) signal loss scenarios for air taxi flights in urban areas. To prepare for ADS-B test flights pilots and crew from NASA Armstrong and NASA’s Glenn Research Center in Cleveland, ran a series of familiarization flights. These flights included several approach and landings, with an emphasis on avionics, medium altitude air-work with steep turns, slow flight and stall demonstrations.NASA/Steve Freeman As air taxis, drones, and other innovative aircraft enter U.S. airspace, systems that communicate an aircraft’s location will be critical to ensure air traffic safety.
      The Federal Aviation Administration (FAA) requires aircraft to communicate their locations to other aircraft and air traffic control in real time using an Automatic Dependent Surveillance-Broadcast (ADS-B) system. NASA is currently evaluating an ADS-B system’s ability to prevent collisions in a simulated urban environment. Using NASA’s Pilatus PC-12 aircraft, researchers are investigating how these systems could handle the demands of air taxis flying at low altitudes through cities.  
      When operating in urban areas, one particular challenge for ADS-B systems is consistent signal coverage. Like losing cell-phone signal, air taxis flying through densely populated areas may have trouble maintaining ADS-B signals due to distance or interference. If that happens, those vehicles become less visible to air traffic control and other aircraft in the area, increasing the likelihood of collisions.
      NASA pilot Kurt Blankenship maps out flight plans during a pre-flight brief. Pilots, crew, and researchers from NASA’s Armstrong Flight Research Center in Edwards, California and NASA’s Glenn Research Center in Cleveland are briefed on the flight plan to gather Automatic Dependent Surveillance-Broadcast signal data between the aircraft and ping-Stations on the ground at NASA Armstrong. These flights are the first cross-center research activity with the Pilatus-PC-12 at NASA Armstrong.NASA/Steve Freeman To simulate the conditions of an urban flight area and better understand signal loss patterns, NASA researchers established a test zone at NASA’s Armstrong Flight Research Center in Edwards, California, on Sept. 23 and 24, 2024.
      Flying in the agency’s Pilatus PC-12 in a grid pattern over four ADS-B stations, researchers collected data on signal coverage from multiple ground locations and equipment configurations. Researchers were able to pinpoint where signal dropouts occurred from the strategically placed ground stations in connection to the plane’s altitude and distance from the stations. This data will inform future placement of additional ground stations to enhance signal boosting coverage.  
      “Like all antennas, those used for ADS-B signal reception do not have a constant pattern,” said Brad Snelling, vehicle test team chief engineer for NASA’s Air Mobility Pathfinders project. “There are certain areas where the terrain will block ADS-B signals and depending on the type of antenna and location characteristics, there are also flight elevation angles where reception can cause signal dropouts,” Snelling said. “This would mean we need to place additional ground stations at multiple locations to boost the signal for future test flights. We can use the test results to help us configure the equipment to reduce signal loss when we conduct future air taxi flight tests.”
      Working in the Mobile Operations Facility at NASA’s Armstrong Flight Research Center in Edwards, California, NASA Advanced Air Mobility researcher Dennis Iannicca adjusts a control board to capture Automatic Dependent Surveillance-Broadcast (ADS-B) data during test flights. The data will be used to understand ADS-B signal loss scenarios for air taxi flights in urban areas.NASA/Steve Freeman The September flights at NASA Armstrong built upon earlier tests of ADS-B in different environments. In June, researchers at NASA’s Glenn Research Center in Cleveland flew the Pilatus PC-12 and found a consistent ADS-B signal between the aircraft and communications antennas mounted on the roof of the center’s Aerospace Communications Facility. Data from these flights helped researchers plan out the recent tests at NASA Armstrong. In December 2020, test flights performed under NASA’s Advanced Air Mobility National Campaign used an OH-58C Kiowa helicopter and ground-based ADS-B stations at NASA Armstrong to collect baseline signal information.
      NASA’s research in ADS-B signals and other communication, navigation, and surveillance systems will help revolutionize U.S. air transportation. Air Mobility Pathfinders researchers will evaluate the data from the three separate flight tests to understand the different signal transmission conditions and equipment needed for air taxis and drones to safely operate in the National Air Space. NASA will use the results of this research to design infrastructure to support future air taxi communication, navigation, and surveillance research and to develop new ADS-B-like concepts for uncrewed aircraft systems.
      Share
      Details
      Last Updated Jan 23, 2025 EditorDede DiniusContactLaura Mitchelllaura.a.mitchell@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Mobility Aeronautics Air Mobility Pathfinders project Airspace Operations and Safety Program Ames Research Center Glenn Research Center Langley Research Center Explore More
      2 min read NASA Glenn Trains Instructors for After-School STEM Program 
      Article 1 day ago 1 min read NASA Glenn Helps Bring Joy to Children in Need
      Article 1 day ago 4 min read NASA Sets Sights on Mars Terrain with Revolutionary Tire Tech
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Aeronautics
      Drones & You
      Air Mobility Pathfinders Project
      View the full article
  • Check out these Videos

×
×
  • Create New...