Jump to content

40 Years Ago: STS-51C, the First Dedicated Department of Defense Shuttle Mission


Recommended Posts

  • Publishers
Posted

On Jan. 24, 1985, space shuttle Discovery took off from NASA’s Kennedy Space Center (KSC) in Florida on STS-51C, the first space shuttle mission entirely dedicated to the Department of Defense (DOD). As such, many of the details of the flight remain classified. Discovery’s crew of Commander Thomas “T.K.” Mattingly, Pilot Loren Shriver, Mission Specialists Ellison Onizuka and James Buchli, and Payload Specialist Gary Payton deployed a classified satellite that used an Inertial Upper Stage (IUS) to reach its final geostationary orbit. The three-day mission ended with a landing at KSC. Postflight inspection of the Solid Rocket Boosters (SRBs) revealed the most significant erosion of O-ring seals seen in the shuttle program up to that time, attributed to unusually cold weather before and during launch. 

In October 1982, NASA assigned astronauts Mattingly, Shriver, Onizuka, and Buchli as the STS-10 crew for a dedicated DOD flight aboard Challenger then scheduled for September 1983. Payton joined the crew as a payload specialist in the summer of 1983 with Keith Wright assigned as his backup. The failure of the IUS on STS-6 in April 1983 delayed the STS-10 mission, that also used the IUS, until engineers could identify and fix the cause of the problem. By September 1983, NASA had remanifested the crew and the payload on STS-41F with a July 1984 launch, that changed to STS-41E by November 1983. Additional delays in fixing the IUS delayed the mission yet again, by June 1984 redesignated as STS-51C and slated for December 1984 aboard Challenger. 

STS-51C marked the third spaceflight for Mattingly, selected in 1966 as part of NASA’s fifth group of astronauts. He served on the prime crew for Apollo 13 until exposure to German measles forced his last-minute replacement by his backup. He then flew on Apollo 16 and STS-4. For Shriver, Onizuka, and Buchli, all three selected as astronauts in the class of 1978, STS-51C marked their first trip into space. The U.S. Air Force selected Payton and Wright in August 1979 in its first class of Manned Spaceflight Engineers, and STS-51C marked Payton’s first and only space mission. 

In November 1984, NASA decided to delay STS-51C from December 1984 to January 1985 and swap orbiters from Challenger to Discovery. Postflight inspections following Challenger’s STS-41G mission in October 1984 revealed degradation of the bonding materials holding thermal protection system tiles onto the orbiter, requiring the replacement of 4,000 tiles. The time required to complete the work precluded a December launch. Tests conducted on Discovery prior to its November STS-51A mission revealed the bonding material to be sound.  

On Jan. 5, 1985, Discovery rolled out from KSC’s Vehicle Assembly Building, where workers mated it with its External Tank (ET) and SRBs, to Launch Pad 39A. There, engineers conducted the Terminal Countdown Demonstration Test, essentially a dress rehearsal for the actual countdown, on Jan. 6-7, with the crew participating in the final few hours much as they would on launch day. The astronauts returned to KSC on Jan. 20 to prepare for the planned launch on Jan. 23. The day before, NASA managers decided to delay the launch by one day due to unseasonably cold weather, with concern about sub-freezing temperatures causing ice to form on the ET and possibly coming loose during ascent and damaging the vehicle. The DOD had requested that NASA keep the actual launch time secret until T minus nine minutes, with most of the countdown taking place hidden from public view.  

Image of a space shuttle lifting off from its launch pad on a pillar of fire against a blue sky.
Liftoff of space shuttle Discovery on STS-51C.

Liftoff of Discovery on its third mission, STS-51C, came at 2:50 p.m. EST on Jan. 24, beginning the 15th space shuttle flight. Eight and a half minutes later, Discovery and its five-man crew had reached orbit. And, at the DOD customer’s request, all public coverage of the mission ended. Although NASA could not reveal the spacecraft’s orbital parameters, trade publications calculated that Discovery first entered an elliptical orbit, circularized over the next few revolutions, prior to Onizuka deploying the IUS and payload combination on the seventh orbit. Neither NASA nor the DOD have released any imagery of the deployment or even of the payload bay, with only a limited number of in-cabin and Earth observation photographs made public. 

To maintain the mission’s secrecy, NASA could reveal the touchdown time only 16 hours prior to the event. On Jan. 27, Mattingly and Shriver brought Discovery to a smooth landing at KSC’s Shuttle Landing Facility after a flight of three days one hour 33 minutes, the shortest space shuttle mission except for the first two orbital test flights. The astronauts orbited the Earth 49 times. About an hour after touchdown, the astronaut crew exited Discovery and boarded the Astrovan for the ride back to crew quarters. Neither NASA management nor the astronauts held a post mission press conference. The U.S. Air Force announced only that the “IUS aboard STS-51C was deployed from the shuttle Discovery and successfully met its mission objectives.” Later in the day, ground crews towed Discovery to the Orbiter Processing Facility to begin preparing it for its next planned mission, STS-51D in March. 

Postscript 

Following the recovery of SRBs after each shuttle mission, engineers conducted detailed inspections before clearing them for reuse. After STS-51C, inspections of the critical O-ring seals that prevented hot gases from escaping from the SRB field joints revealed significant erosion and “blow-by” between the primary and secondary O-rings. Both left and right hand SRBs showed this erosion, the most significant of the program up to that time. Importantly, these O-rings experienced weather colder than any previous shuttle mission, with overnight ambient temperatures in the teens and twenties. Even at launch time, the O-rings had reached only 60 degrees. Engineers believed that these cold temperatures made the O-rings brittle and more susceptible to erosion. One year later, space shuttle Challenger launched after similarly cold overnight temperatures, with O-rings at 57 degrees at launch time. The Rogers Commission report laid the blame of the STS-51L accident on the failure of O-rings that allowed super-hot gases to escape from the SRB and impinge on the hydrogen tank in the ET, resulting in the explosion that destroyed the orbiter and claimed the lives of seven astronauts. The commission also faulted NASA’s safety culture for not adequately addressing the issue of O-ring erosion, a phenomenon first observed on STS-2 and to varying degrees on several subsequent missions.  

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Official portrait of NASA astronaut Jonny Kim, who will serve as a flight engineer during Expedition 73. Credit: NASA NASA will provide interview opportunities with astronaut Jonny Kim beginning at 9 a.m. EDT, Tuesday, March 18, to highlight his upcoming mission to the International Space Station in April.
      The virtual interviews from Star City, Russia, will stream live on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      Media interested in participating must contact the newsroom at NASA’s Johnson Space Center in Houston no later than 5 p.m., Monday, March 17, at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is online.
      Kim will launch on Tuesday, April 8, aboard the Roscosmos Soyuz MS-27 spacecraft, accompanied by Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky. The trio will spend approximately eight months aboard the orbital laboratory before returning to Earth in the fall 2025. During his time in orbit, Kim will conduct scientific investigations and technology demonstrations to help prepare the crew for future space missions and provide benefits to people on Earth.
      Kim is making his first spaceflight after selection as part of the 2017 NASA astronaut class. A native of Los Angeles, he is a U.S. Navy lieutenant commander and dual designated naval aviator and flight surgeon. Kim also served as an enlisted Navy SEAL. He holds a bachelor’s degree in Mathematics from the University of San Diego and a medical degree from Harvard Medical School in Boston. He completed his internship with the Harvard Affiliated Emergency Medicine Residency at Massachusetts General Hospital and Brigham and Women’s Hospital. After completing initial astronaut candidate training, Kim supported mission and crew operations in various roles, including the Expedition 65 lead operations officer, T-38 operations liaison, and space station capcom chief engineer. Follow @jonnykimusa on X and @jonnykimusa on Instagram.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is able to focus more of its resources on deep space missions to the Moon and Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Raegan Scharfetter
      Johnson Space Center, Houston
      281-910-4989
      raegan.r.scharfetter@nasa.gov
      Share
      Details
      Last Updated Mar 11, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Humans in Space Astronauts Expedition 73 International Space Station (ISS) ISS Research Jonny Kim View the full article
    • By NASA
      On March 6, 1985, NASA’s newest space shuttle, Atlantis, made its public debut during a rollout ceremony at the Rockwell International manufacturing plant in Palmdale, California. Under construction for three years, Atlantis joined NASA’s other three space-worthy orbiters, Columbia, Challenger, and Discovery, and atmospheric test vehicle Enterprise. Officials from NASA, Rockwell, and other organizations attended the rollout ceremony. By the time NASA retired Atlantis in 2011, it had flown 33 missions in a career spanning 26 years and flying many types of missions envisioned for the space shuttle. The Visitor Center at NASA’s Kennedy Space Center in Florida has Atlantis on display. 

      Space shuttle Atlantis under construction at Rockwell International’s Palmdale, California, plant in 1984. Credit/NASA. Atlantis during the rollout ceremony in Palmdale. Credit/NASA. Workers truck Atlantis from Palmdale to NASA’s Dryden, now Armstrong, Flight Research Center. Credit/NASA. On Jan. 25, 1979, NASA announced the names of the first four space-worthy orbiters – Columbia, Challenger, Discovery, and Atlantis. Like the other vehicles, NASA named Atlantis after an historical vessel of discovery and exploration – the Woods Hole Oceanographic Institute’s two-masted research ship Atlantis that operated from 1930 to 1966. On Jan. 29, NASA signed the contract with Rockwell International of Downey, California, to build and deliver Atlantis. Construction began in March 1980 and finished in April 1984. Nearly identical to Discovery but with the addition of hardware to support the cryogenic Centaur upper stage then planned to deploy planetary spacecraft in 1986, plans shelved following the Challenger accident. After a year of testing, workers prepared Atlantis for its public debut. 

      Atlantis arrives at NASA’s Dryden, now Armstrong, Flight Research Center to prepare for its cross-country ferry flight. Credit/NASA. Atlantis during an overnight stop at Ellington Air Force Base, now Ellington Field, in Houston. Credit/NASA. Atlantis arrives at NASA’s Kennedy Space Center in Florida.Credit/NASA. Three days after the rollout ceremony, workers trucked Atlantis 36 miles overland to NASA’s Dryden, now Armstrong, Flight Research Center at Edwards Air Force Base in California’s Mojave Desert, for final preparations for its cross-country ferry flight. In the Mate Demate Device, workers placed Atlantis atop the Shuttle Carrier Aircraft, a modified Boeing 747, to begin the ferry flight. The duo left Edwards on April 12, the fourth anniversary of the first space shuttle flight. Following an overnight stop at Houston’s Ellington Air Force Base, now Ellington Field, Atlantis arrived at NASA’s Kennedy Space Center in Florida on April 13. 

      Atlantis following its first rollout to Launch Pad 39A. Credit/NASA. The flight readiness firing of Atlantis’ three main engines.Credit/NASA. Liftoff of Atlantis on its first mission, STS-51J. Credit/NASA. Four months later, on Aug. 12, workers towed Atlantis from the processing facility to the assembly building and mated it to an external tank and twin solid rocket boosters. The entire stack rolled out to Launch Pad 39A on Aug. 30 in preparation for the planned Oct. 3 launch of the STS-51J mission. As with any new orbiter, on Sept. 13 NASA conducted a 20-second Flight Readiness Firing of Atlantis’ three main engines. On Sept. 16, the five-person crew participated in a countdown demonstration test, leading to an on time Oct. 3 launch. Atlantis had joined the shuttle fleet and begun its first mission to space. 

      Space shuttle Atlantis in the Visitor Center at NASA’s Kennedy Space Center in Florida. Credit/NASA. Over the course of its 33 missions spanning more than 26 years, Atlantis flew virtually every type of mission envisioned for the space shuttle, including government and commercial satellite deployments, deploying spacecraft to visit interplanetary destinations, supporting scientific missions, launching and servicing scientific observatories such as the Hubble Space Telescope, performing crew rotations and resupplying the Mir space station, and assembling and maintaining the International Space Station. Atlantis flew the final mission of the shuttle program, STS-135,  in July 2011. The following year, NASA transported Atlantis to the Kennedy Visitor Center for public display.  

      Explore More
      7 min read 40 Years Ago: Space Shuttle Discovery Makes its Public Debut
      Article 1 year ago 14 min read 40 Years Ago: STS-4, Columbia’s Final Orbital Flight Test
      Article 3 years ago 6 min read 45 Years Ago: Space Shuttle Enterprise Makes its Public Debut
      Article 3 years ago View the full article
    • By European Space Agency
      Video: 00:01:36 On  Wednesday 12 March 2025 ESA’s Hera spacecraft for planetary defence performs a flyby of Mars. The gravity of the red planet shifts the spacecraft’s trajectory towards its final destination of the Didymos binary asteroid system, shortening its trip by months and saving substantial fuel.
      Watch the livestream release of images from Hera’s flyby by the mission’s science team on Thursday 13 March, starting at 11:50 CET!
      Hera comes to around 5000 km from the surface of Mars during its flyby. It will also image Deimos, the smaller of Mars’s two moons, from a minimum 1000 km away (while venturing as close as 300 km). Hera will also image Mars’s larger moon Phobos as it begins to move away from Mars.
      Launched on 7 October 2024, Hera on its way to visit the first asteroid to have had its orbit altered by human action. By gathering close-up data about the Dimorphos asteroid, which was impacted by NASA’s DART spacecraft in 2022, Hera will help turn asteroid deflection into a well understood and potentially repeatable technique.
      Hera will reach the Didymos asteroid and its Dimorphos moonlet in December 2026. By gathering crucial missing data during its close-up crash scene investigation, Hera will turn the kinetic impact method of asteroid deflection into a well understood technique that could potentially be used for real when needed.
      View the full article
    • By Space Force
      The Department of Defense released the memorandum Additional Guidance for Executive Order 14183, “Prioritizing Military Excellence and Readiness.
      View the full article
    • By NASA
      On March 2, 1995, space shuttle Endeavour launched from NASA’s Kennedy Space Center in Florida on its eighth trip into space, on the STS-67 Astro-2 mission. The crew included Commander Stephen Oswald, Pilot William Gregory, Mission Specialists John Grunsfeld, Wendy Lawrence, and Tamara Jernigan – who served as payload commander on the mission – and Payload Specialists Samuel Durrance and Ronald Parise. During their then record setting 17-day mission, the astronauts used the three ultraviolet telescopes of the Astro-2 payload to observe hundreds of celestial objects. The mission ended with a landing at Edwards Air Force Base in California. 

      Official photo of the STS-67 crew of Stephen Oswald, seated at left, Tamara Jernigan, and William Gregory; Ronald Parise, standing at left, Wendy Lawrence, John Grunsfeld, and Samuel Durrance. NASA The STS-67 crew patch. NASA The Astro-2 payload patch.NASA In August 1993, NASA assigned Jernigan as the payload commander for Astro-2, for a weeklong flight aboard Columbia then targeted for late 1994. Jernigan, selected by NASA in 1985, had previously flown aboard STS-40 and STS-52. Two months later, NASA assigned Grunsfeld, a space rookie from the class of 1992, as a mission specialist. In January 1994, NASA rounded out the crew by assigning Oswald, Gregory, Lawrence, Durrance, and Parise. Oswald, from the class of 1985, had flown previously as pilot on STS-42 and STS-56, while STS-67 represented the first spaceflight for Gregory, selected in 1990, and Lawrence, chosen in 1992. Durrance and Parise, selected as payload specialists in 1984, had flown on STS-35, the Astro-1 mission. 

      Space shuttle Endeavour rolls out to Launch Pad 39A at NASA’s Kennedy Space Center in Florida.NASA The STS-67 crew during a countdown demonstration test. NASA The STS-67 astronauts walk out for their ride to the launch pad. NASA The Astro-2 science payload consisted of three ultraviolet telescopes mounted on a Spacelab instrument pointing system in the shuttle’s cargo bay. The trio of telescopes flew previously on STS-35, the Astro-1 mission, in December 1990. That mission, originally planned to fly on STS-61E in March 1986, remained grounded following the Challenger accident. Due to equipment malfunctions, the Astro-1 mission only achieved 80% of its objectives, leading to the reflight of the instruments on Astro-2, originally planned as a seven-day mission aboard Discovery. A switch to Columbia enabled a mission twice as long, with significantly more observation time. A scheduled maintenance period for Columbia resulted in Astro-2 switching to Endeavour, with a new flight duration of more than 15 days, but a launch delay to February 1995. The three telescopes supported 23 different studies, observing more than 250 celestial objects including joint observations with the Hubble Space Telescope of the planet Jupiter. 

      The launch of space shuttle Endeavour on STS-67 to begin the Astro-2 mission.NASA The Astro-2 telescopes deployed in Endeavour’s payload bay. NASA Endeavour returned to Kennedy following its previous flight, STS-68, in October 1994. After servicing the orbiter, workers rolled it to the vehicle assembly building on Feb. 3, 1995, for mating with its external tank and solid rocket boosters, and then out to Launch Pad 39A on Feb. 8. At 1:38 a.m. EST on March 2, Endeavour thundered into the night sky to begin the STS-67 mission. Eight and a half minutes later, the shuttle and its crew had reached space. 
      Shortly after reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators. Jernigan and Durrance activated the Spacelab pallet and its pointing system and the telescopes. The crew split into two shifts to enable data collection around the clock during the mission. Oswald, Gregory, Grunsfeld, and Parise made up the red shift while Lawrence, Jernigan, and Durrance comprised the blue shift. 
      Stephen Oswald conducts a session with the Middeck Active Control Experiment. NASA Wendy Lawrence monitors a protein crystal growth apparatus. NASA John Grunsfeld, left, and Samuel Durrance at the controls of the telescopes on the shuttle’s aft flight deck. NASA William Gregory conducts a biotechnology experiment in Endeavour’s middeck. NASA Samuel Durrance and Tamara Jernigan assemble the day’s teleprinter message. NASA Ronald Parise floats near the shuttle’s overhead window.NASA For the remainder of the mission, the astronauts operated the telescopes, conducting 385 maneuvers of Endeavour to point the instruments at the celestial targets. The results met or exceeded preflight expectations. The crew also conducted a series of middeck investigations in technology demonstration and biotechnology. The Middeck Active Control Experiment studied the active control of flexible structures in space. Five years later, a newer version flew as one of the first experiments on the International Space Station. 

      A selection of the STS-67 crew Earth observation photographs. Gulf of Batabano, Cuba.NASA Antofagasta, Chile. NASA Volcanic eruption on Barren Island, Andaman Islands.NASA Disappointment Reach, Western Australia. NASA Like all space crews, the STS-67 astronauts also spent time taking photographs of the Earth using handheld cameras. The mission’s long duration enabled them to image many targets. 
      The seven-person STS-67 crew poses for an in-flight photo. NASA Endeavour touches down at Edwards Air Force Base in California. NASA On March 14, an eighth American joined the STS-67 crew in space when NASA astronaut Norman Thagard blasted off with two cosmonauts, headed for space station Mir. With three other cosmonauts already aboard Mir, the total number of humans in orbit grew to a then-record of 13. Two days later, Oswald and Thagard, who had flown together on STS-42, talked to each other via ship-to-ship radio. 
      Inclement weather at Kennedy thwarted the planned reentry on March 17, and the astronauts spent an extra day in space. On March 18, they again waved off a Kennedy landing and one orbit later, Oswald and Gregory piloted Endeavour to a smooth landing at Edwards Air Force Base in California. The crew had flown 262 orbits around the Earth in 16 days, 15 hours, and 9 minutes, at the time the longest space shuttle mission. A few hours later, a large crowd greeted the astronauts upon their return to Houston’s Ellington Field. Endeavour began its ferry flight back to Kennedy on March 26, arriving there the next day. Workers towed Endeavour to the processing facility to prepare it for its next flight, STS-73, then planned for September 1995. 
      Watch the crew narrate a video about the STS-67 mission.  

      Explore More
      8 min read NASA’s Hubble Celebrates Decade of Tracking Outer Planets
      Encountering Neptune in 1989, NASA’s Voyager mission completed humankind’s first close-up exploration of the four…
      Article 3 months ago 11 min read 30 Years Ago: Hubble Launched to Unlock the Secrets of the Universe
      30 Years Ago: Hubble Launched to Unlock the Secrets of the Universe
      Article 5 years ago 22 min read 35 Years Ago: NASA Selects its 13th Group of Astronauts 
      Article 2 months ago View the full article
  • Check out these Videos

×
×
  • Create New...