Members Can Post Anonymously On This Site
How New NASA, India Earth Satellite NISAR Will See Earth
-
Similar Topics
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA Marshall will hold a candle-lighting ceremony and wreath placement at 9:30 a.m. CST. The ceremony will include remarks from Larry Leopard, associate director, and Bill Hill, director of Marshall’s Office of Safety and Mission Assurance. NASA/ Krisdon Manecke NASA’s Marshall Space Flight Center in Huntsville, Alabama, invites media to attend its observance of the agency’s Day of Remembrance at 9:30 a.m. CST Thursday, Jan. 23, in the lobby of Building 4221.
Day of Remembrance honors the members of the NASA family who lost their lives while furthering the cause of exploration and discovery.
The event will include brief remarks from NASA Marshall leaders, followed by a candle lighting and moment of silence for the crews of Apollo 1 and space shuttles Challenger and Columbia. Speakers will include:
Larry Leopard, associate director, technical. Bill Hill, director, Office of Safety and Mission Assurance. Media interested in attending the event must confirm by 12 p.m. Wednesday, Jan. 22, with Molly Porter at: molly.a.porter@nasa.gov.
The agency will also pay tribute to its fallen astronauts with special online content, updated on NASA’s Day of Remembrance, at:
https://www.nasa.gov/dor/
Molly Porter
Marshall Space Flight Center, Huntsville, Ala.
256-424-5158
molly.a.porter@nasa.gov
Share
Details
Last Updated Jan 21, 2025 EditorBeth RidgewayContactMolly Portermolly.a.porter@nasa.govLocationMarshall Space Flight Center Related Terms
Marshall Space Flight Center Explore More
5 min read Exoplanets Need to Be Prepared for Extreme Space Weather, Chandra Finds
Article 5 days ago 4 min read NASA Instrument on Firefly’s Blue Ghost Lander to Study Lunar Interior
Article 2 weeks ago 3 min read NASA to Test Solution for Radiation-Tolerant Computing in Space
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Credit: NASA With Finland’s signing of the Artemis Accords on Tuesday, NASA celebrates the 53rd nation committing to the safe and responsible exploration of space that benefits humanity. The signing ceremony took place on the margins of the Aalto University’s Winter Satellite Workshop 2025 in Espoo, Finland.
“Today, Finland is joining a community of nations that want to share scientific data freely, operate safely, and preserve the space environment for the Artemis Generation,” said NASA Associate Administrator Jim Free, who provided pre-recorded virtual remarks for the ceremony. “By signing the Artemis Accords, Finland builds on its rich history in space, excelling in science, navigation, and Earth observation. Forging strong partnerships between our nations and among the international community is critical for advancing our shared space exploration goals.”
Wille Rydman, Finland’s minister of economic affairs, signed the Artemis Accords in front of an audience of Finnish space officials and workshop attendees.
“Finland has been part of the space exploration community for decades with innovations and technology produced by Finnish companies and research institutions,” said Rydman. “The signing of the Artemis Accords is in line with Finland’s newly updated space strategy that highlights the importance of international cooperation and of strengthening partnerships with the Unites States and other allies. We aim for this cooperation to open great opportunities for the Finnish space sector in the new era of space exploration and in the Artemis program.”
NASA and Finland have a long history of collaboration, and most recently, Finland is contributing to the upcoming Intuitive Machines-2 delivery to the Moon under NASA’s Artemis campaign and CLPS (Commercial Lunar Payload Services) initiative. Intuitive Machines will deliver a lunar LTE/4G communications system developed by Finnish company, Nokia. Its U.S. subsidiary, Nokia of America, was selected as part of NASA’s Tipping Point opportunity through the agency’s Space Technology Mission Directorate, to advance a lunar surface communications system that could help humans and robots explore more of the Moon than ever before.
The Finnish Meteorological Institute also provided the pressure and humidity measurement instruments for the Environmental Monitoring Station instrument suite aboard the Curiosity Rover, operating on Mars now.
In 2020, the United States, led by NASA and the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords, a set of principles promoting the beneficial use of space for humanity.
The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices for responsible behavior that NASA and its partners have supported, including the public release of scientific data.
Learn more about the Artemis Accords at:
https://www.nasa.gov/artemis-accords
-end-
Kathryn Hambleton / Elizabeth Shaw
Headquarters, Washington
202-358-1600
kathryn.a.hambleton@nasa.gov / elizabeth.a.shaw@nasa.gov
Share
Details
Last Updated Jan 21, 2025 LocationNASA Headquarters Related Terms
artemis accords NASA Headquarters Office of International and Interagency Relations (OIIR) View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A test rover with shape memory alloy spring tires traverses rocky, Martian-simulated terrain.Credit: NASA The mystique of Mars has been studied for centuries. The fourth planet from the Sun is reminiscent of a rich, red desert and features a rugged surface challenging to traverse. While several robotic missions have landed on Mars, NASA has only explored 1% of its surface. Ahead of future human and robotic missions to the Red Planet, NASA recently completed rigorous rover testing on Martian-simulated terrain, featuring revolutionary shape memory alloy spring tire technology developed at the agency’s Glenn Research Center in Cleveland in partnership with Goodyear Tire & Rubber.
Rovers — mobile robots that explore lunar or planetary surfaces — must be equipped with adequate tires for the environments they’re exploring. As Mars has an uneven, rocky surface, durable tires are essential for mobility. Shape memory alloy (SMA) spring tires help make that possible.
Shape memory alloys are metals that can return to their original shape after being bent, stretched, heated, and cooled. NASA has used them for decades, but applying this technology to tires is a fairly new concept.
“We at Glenn are one of the world leaders in bringing the science and understanding of how you change the alloy compositions, how you change the processing of the material, and how you model these systems in a way that we can control and stabilize the behaviors so that they can actually be utilized in real applications,” said Dr. Santo Padula II, materials research engineer at NASA Glenn.
Researchers from NASA’s Glenn Research Center and Airbus Defence & Space pose with a test rover on Martian-simulated terrain.Credit: NASA Padula and his team have tested several applications for SMAs, but his epiphany of the possibilities for tires came about because of a chance encounter.
While leaving a meeting, Padula encountered Colin Creager, a mechanical engineer at NASA Glenn whom he hadn’t seen in years. Creager used the opportunity to tell him about the work he was doing in the NASA Glenn Simulated Lunar Operations (SLOPE) Laboratory, which can simulate the surfaces of the Moon and Mars to help scientists test rover performance. He brought Padula to the lab, where Padula immediately took note of the spring tires. At the time, they were made of steel.
Padula remarked, “The minute I saw the tire, I said, aren’t you having problems with those plasticizing?” Plasticizing refers to a metal undergoing deformation that isn’t reversible and can lead to damage or failure of the component.
“Colin told me, ‘That’s the only problem we can’t solve.’” Padula continued, “I said, I have your solution. I’m developing a new alloy that will solve that. And that’s how SMA tires started.”
From there, Padula, Creager, and their teams joined forces to improve NASA’s existing spring tires with a game-changing material: nickel-titanium SMAs. The metal can accommodate deformation despite extreme stress, permitting the tires to return to their original shape even with rigorous impact, which is not possible for spring tires made with conventional metal.
Credit: NASA Since then, research has been abundant, and in the fall of 2024, teams from NASA Glenn traveled to Airbus Defence and Space in Stevenage, United Kingdom, to test NASA’s innovative SMA spring tires. Testing took place at the Airbus Mars Yard — an enclosed facility created to simulate the harsh conditions of Martian terrain.
“We went out there with the team, we brought our motion tracking system and did different tests uphill and back downhill,” Creager said. “We conducted a lot of cross slope tests over rocks and sand where the focus was on understanding stability because this was something we had never tested before.”
During the tests, researchers monitored rovers as the wheels went over rocks, paying close attention to how much the crowns of the tires shifted, any damage, and downhill sliding. The team expected sliding and shifting, but it was very minimal, and testing met all expectations. Researchers also gathered insights about the tires’ stability, maneuverability, and rock traversal capabilities.
As NASA continues to advance systems for deep space exploration, the agency’s Extravehicular Activity and Human Surface Mobility program enlisted Padula to research additional ways to improve the properties of SMAs for future rover tires and other potential uses, including lunar environments.
“My goal is to extend the operating temperature capability of SMAs for applications like tires, and to look at applying these materials for habitat protection,” Padula said. “We need new materials for extreme environments that can provide energy absorption for micrometeorite strikes that happen on the Moon to enable things like habitat structures for large numbers of astronauts and scientists to do work on the Moon and Mars.”
Researchers say shape memory alloy spring tires are just the beginning.
Explore More
4 min read NASA Scientists, Engineers Receive Presidential Early Career Awards
Article 4 days ago 3 min read NASA Scientists Find New Human-Caused Shifts in Global Water Cycle
Article 5 days ago 6 min read New Simulated Universe Previews Panoramas From NASA’s Roman Telescope
Article 7 days ago View the full article
-
By NASA
Freelancer NASA’s Sustainable Business Model Challenge is looking for entrepreneurs, startups, and researchers to leverage the agency’s publicly available Earth system science data to develop commercial solutions for climate challenges.
This opportunity, with a submission deadline of June 13, bridges the gap between vast climate data and actionable solutions by inviting solvers to transform data into sustainable business models that support climate resilience and decision-making.
“Creative, outcome-driven entrepreneurs are the lifeblood of our country’s economy, and we’re excited to see the sustainable climate solutions they’re able to come up with when working closely with NASA’s vast resources and data,” said Jason L. Kessler, program executive for the NASA Small Business Innovation Research / Small Business Technology Transfer (SBIR/STTR) program, which is sponsoring the challenge.
Through the Sustainable Business Model Challenge, NASA aims to foster a new set of sustainable enterprises capable of turning climate insights into tangible market-ready services, ultimately contributing to a more resilient future for vulnerable communities, businesses, and ecosystems. NASA is committed to broadening participation in its solicitations and fostering technology advancements.
By engaging new entrepreneurs, the challenge serves as a pathway to NASA’s SBIR/STTR program, helping scale solutions to advance the global response to climate change and encourage a more sustainable future. From its vantage point in space, NASA holds a wealth of data that can inform new approaches to climate adaptation and mitigation.
Participants will submit a 10-page business concept paper that includes details on how they will incorporate NASA climate or Earth system data to deliver a product or service. Up to ten winning teams will receive $10,000 each, along with admission to a 10-week capability development training designed to strengthen any future proposals for potential NASA funding.
NASA’s SBIR/STTR program, managed by the agency’s Space Technology Mission Directorate, is part of America’s Seed Fund, the nation’s largest source of early-stage funding for innovative technologies. Through this program, entrepreneurs, startups, and small businesses with less than 500 employees can receive funding and non-monetary support to build, mature, and commercialize their technologies, advancing NASA missions and advancing the nations aerospace economy.
Ensemble is hosting the challenge on behalf of NASA. The NASA Tournament Lab, part of the Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate, manages the challenge. The program supports global public competitions and crowdsourcing as tools to advance NASA research and development and other mission needs.
The deadline to participate in NASA’s Sustainable Business Model Challenge is June 13, 2025.
For more information about the challenge, visit: https://nasabusinesschallenge.org/
View the full article
-
By European Space Agency
A capacity increase by almost 80%! In late July 2024, the Malargüe deep-space communication station completed an important upgrade of its antenna feed that will allow missions to send much more data back to Earth.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.