Members Can Post Anonymously On This Site
Hydrogen Sulfide (H2S) Independent Assessment
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
How to Attend
The workshop will be hosted by NASA Jet Propulsion Laboratory.
Virtual and in-person attendance are available. Registration is required for both. (Link coming soon!)
Virtual attendees will receive connection information one week before the workshop.
Background, Goals and Objectives
The NASA Engineering and Safety Center (NESC) is conducting an assessment of the state of cold capable electronics for future lunar surface missions. The intent is to enable the continuous use of electronics with minimal or no thermal management on missions of up to 20 years in all regions of the lunar surface, e.g., permanently shadowed regions and equatorial. The scope of the assessment includes: capture of the state of cold electronics at NASA, academia, and industry; applications and challenges for lunar environments; gap analyses of desired capabilities vs state of the art/practice; guidance for cold electronics selection, evaluation and qualification; and recommendations for technology advances and follow-on actions to close the gaps. The preliminary report of the assessment will be available the first week of April 2025 on this website, i.e., 3 weeks prior to the workshop. Attendees are urged to read the report beforehand as the workshop will provide only a limited, high-level summary of the report’s key findings. The goal of the workshop is to capture your feedback with regards to the findings of the report, especially in the areas below: Technologies, new or important studies or data that we missed. Gaps, i.e. requirements vs available capabilities that we missed. Additional recommendations, suggestions, requests, that we missed.
Preliminary Agenda
Day 1, April 30, 2025 8:00 – 9:00 Sign-in 9:00 – 10:00 Introduction – Y. Chen 10:00 – 11:00 Environment and Architectural Considerations – R. Some 11:00 – 12:00 Custom Electronics – M. Mojarradi 12:00 – 13:00 Lunch 13:00 – 14:00 COTS Components – J. Yang-Scharlotta 14:00 – 15:00 Power Architecture – R. Oeftering 15:00 – 15:30 Energy Storage – E. Brandon 15:30 – 17:00 Materials and Packaging and Passives – L. Del Castillo 17:00 – 17:30 Qualification – Y. Chen 18:30 Dinner Day 2, May 1, 2025 8:00 – 9:00 Sign-in 9:00 – 12:00 Review and discussion of key findings 12:00 – 13:00 Lunch 13:00 – 15:00 Follow on work concepts & discussions. Please be prepared to discuss: 15 min each from industry primes and subsystem developers What would you like to see developed and how would it impact your future missions/platforms? 15:00 – 17:30 Follow on work concepts & discussions 15 min each from technology & component developers, academia, government agencies, etc. What would you like to be funded to do and what are benefits to NASA/missions? 17:00 – 17:30 Wrap up – Y. Chen Points of Contact
If you have any questions regarding the workshop, please contact Roxanne Cena at Roxanne.R.Cena@jpl.nasa.gov and Amy K. Wilson at Amy.K.Wilson@jpl.nasa.gov
Share
Details
Last Updated Feb 20, 2025 Related Terms
NASA Engineering and Safety Center Explore More
2 min read NESC Key In-Progress Technical Activities
Article 1 week ago 5 min read Mechanical Systems TDT Support Reaches Across NASA Programs
Article 2 months ago 2 min read NESC Assists in Heatshield Investigation
Article 2 months ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 min read
2023 Entrepreneurs Challenge Winner Skyline Nav AI: Revolutionizing GPS-Independent Navigation with Computer Vision
NASA sponsored Entrepreneurs Challenge events in 2020, 2021, and 2023 to identify innovative ideas and technologies from small business start-ups with the potential to advance the agency’s science goals. To help leverage external funding sources for the development of innovative technologies of interest to NASA, SMD involved the venture capital community in Entrepreneurs Challenge events. Challenge winners were awarded prize money, and in 2023 the total Entrepreneurs Challenge prize value was $1M. Numerous challenge winners have subsequently received funding from both NASA and external sources (e.g., other government agencies or the venture capital community) to further develop their technologies.
Skyline Nav AI, a winner of the 2023 NASA Entrepreneurs Challenge, is pioneering GPS-independent navigation by leveraging cutting-edge computer vision models, artificial intelligence (AI), and edge computing.
Skyline Nav AI’s flagship technology offers precise, real-time geolocation without the need for GPS, Wi-Fi, or cellular networks. The system utilizes machine learning algorithms to analyze terrain and skyline features and match them with preloaded reference datasets, providing up to centimeter-level accuracy in GPS-denied environments. This capability could enable operations in areas where GPS signals are absent, blocked, degraded, spoofed, or jammed, including urban canyons, mountainous regions, and the Moon.
Skyline Nav AI’s flagship technology at work in New York to provide precise location by matching the detected skyline with a reference data set. The red line shows detection by Skyline Nav AI technology, the green line marks the true location in the reference satellite dataset, and the orange line represents the matched location (i.e., the location extracted from the satellite dataset using Skyline Nav AI algorithms). Skyline Nav’s visual navigation technology can deliver accuracy up to five meters, 95% of the time. The AI-powered visual positioning models continuously improve geolocation precision through pixel-level analysis and semantic segmentation of real-time images, offering high reliability without the need for GPS.
In addition to its visual-based AI, Skyline Nav AI’s software is optimized for edge computing, ensuring that all processing occurs locally on the user’s device. This design enables low-latency, real-time decision-making without constant satellite or cloud-based connectivity, making it ideal for disconnected environments such as combat zones or space missions.
Furthermore, Skyline Nav AI’s technology can be integrated with various sensors, including inertial measurement units (IMUs), lidar, and radar, to further enhance positioning accuracy. The combination of visual navigation and sensor fusion can enable centimeter-level accuracy, making the technology potentially useful for autonomous vehicles, drones, and robotics operating in environments where GPS is unreliable.
“Skyline Nav AI aims to provide the world with an accurate, resilient alternative to GPS,” says Kanwar Singh, CEO of Skyline Nav AI. “Our technology empowers users to navigate confidently in even the most challenging environments, and our recent recognition by NASA and other partners demonstrates the value of our innovative approach to autonomous navigation.”
Skyline Nav AI continues to expand its influence through partnerships with organizations such as NASA, the U.S. Department of Defense, and the commercial market. Recent collaborations include projects with MIT, Draper Labs, and AFRL (Air Force Research Laboratory), as well as winning the MOVE America 2024 Pitch competition and being a finalist in SXSW 2024.
Sponsoring Organization: The NASA Science Mission Directorate sponsored the Entrepreneurs Challenge events.
Project Leads: Kanwar Singh, Founder & CEO of Skyline Nav AI
Share
Details
Last Updated Jan 07, 2025 Related Terms
Artificial Intelligence (AI) Science-enabling Technology Technology Highlights Explore More
7 min read Very Cold Detectors Reveal the Very Hot Universe and Kick Off a New Era in X-ray Astronomy
Article
3 weeks ago
9 min read Towards Autonomous Surface Missions on Ocean Worlds
Article
1 month ago
4 min read NASA-developed Technology Supports Ocean Wind Speed Measurements from Commercial Satellite
Article
2 months ago
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
In-person participants L-R standing: Dave Francisco, Joanne Kaouk, Dr. Richard Moon, Dr. Tony Alleman, Dr. Sean Hardy, Sarah Childress, Kristin Coffey, Dr. Ed Powers, Dr. Doug Ebersole, Dr. Steven Laurie, Dr. Doug Ebert; L-R seated: Dr. Alejandro Garbino, Dr. Robert Sanders, Dr. Kristi Ray, Dr. Mike Gernhardt, Dr. Joseph Dervay, Dr. Matt Makowski). Not pictured: Dr. Caroline Fife In June 2024, the NASA Office of the Chief Health and Medical Officer (OCHMO) Standards Team hosted an independent assessment working group to review the status and progress of research and clinical activities intended to mitigate the risk of decompression sickness (DCS) related to patent foramen ovale (PFO) during spaceflight and associated ground testing and human subject studies.
Decompression sickness (DCS) is a condition which results from dissolved gases (primarily nitrogen) forming bubbles in the bloodstream and tissues. It is usually experienced in conditions where there are rapid decreases in ambient pressure, such as in scuba divers, high-altitude aviation, or other pressurized environments. The evolved gas bubbles have various physiological effects and can obstruct the blood vessels, trigger inflammation, and damage tissue, resulting in symptoms of DCS. NASA presently classifies DCS into two categories: Type I DCS, which is less severe, typically leads to musculoskeletal symptoms including pain in the joints or muscles, or skin rash. Type II DCS is more severe and commonly results in neurological, inner ear, and cardiopulmonary symptoms. The risk of DCS in spaceflight presents during extravehicular activities (EVAs) in which astronauts perform mission tasks outside the spaceflight vehicle while wearing a pressurized suit at a lower pressure than the cabin pressure. DCS mitigation protocols based on strategies to reduce systemic nitrogen load are implemented through the combination of habitat environmental parameters, EVA suit pressure, and breathing gas procedures (prebreathe protocols) to achieve safe and effective mission operations. The pathophysiology of DCS has still not been fully elucidated since cases occur despite the absence of detected gas bubbles but includes right to left shunting of venous gas emboli (VGE) via several potential mechanisms, one of which is a Patent Foramen Ovale (PFO).
From: Dr. Schochet & Dr. Lie, Pediatric Pulmonologists
Reference OCHMO-TB-037 Decompression Sickness (DCS) Risk Mitigation technical brief for additional information.
A PFO is a shunt between the right atrium and the left atrium of the heart, which is a persisting remnant of a physiological communication present in the fetal heart. Post-natal increases in left atrial pressure usually force the inter-septal valve against the septum secundum and within the first 2 years of life, the septae permanently fuse due to the development of fibrous adhesions. Thus, all humans are born with a PFO and approximately 75% of PFOs fuse following childbirth. For the 25% of the population’s whose PFOs do not fuse, ~6% have what is considered by some to be a large PFO (> 2 mm). PFO diameter can increase with age. The concern with PFOs is that with a right to left shunt between the atria, venous emboli gas may pass from the right atrium (venous) to the left atrium (arterial) (“shunt”), thus by-passing the normal lung filtration of venous emboli which prevent passage to the arterial system. Without filtration, bubbles in the arterial system may lead to a neurological event such as a stroke. Any activity that increases the right atrium/venous pressure over the left atrium/arterial pressure (such as a Valsalva maneuver, abdominal compression) may further enable blood and/or emboli across a PFO/shunt.
From: Nuffield Department of Clinical Neurosciences
The purpose of this working group was to review and provide analysis on the status and progress of research and clinical activities intended to mitigate the risk of PFO and DCS issues during spaceflight. Identified cases of DCS during NASA exploration atmosphere ground testing conducted in pressurized chambers led to the prioritization of the given topic for external review. The main goals of the working group included:
Quantification of any increased risk associated with the presence of a PFO during decompression protocols utilized in ground testing and spaceflight EVAs, as well as unplanned decompressions (e.g., cabin depressurization, EVA suit leak). Describe risks and benefits of PFO screening in astronaut candidates, current crewmembers, and chamber test subjects. What are potential risk reduction measures that could be considered if a person was believed to be at increased risk of DCS due to a PFO? What research and/or technology development is recommended that could help inform and/or mitigate PFO-related DCS risk? The working group took place over two days at NASA’s Johnson Space Center and included NASA subject matter experts and stakeholders, as well as invited external reviewers from areas including cardiology, hypobaric medicine, spaceflight medicine, and military occupational health. During the working group, participants were asked to review past reports and evidence related to PFOs and risk of DCS, materials and information regarding NASA’s current experience and practices, and case studies and subsequent decision-making processes. The working group culminated in an open-forum discussion where recommendations for current and future practices were conferred and subsequently summarized in a final summary report, available on the public NASA OCHMO Standards Team website.
The following key findings are the main take-aways from the OCHMO independent assessment:
In an extreme exposure/high-risk scenario, excluding individuals with a PFO and treating PFOs does not necessarily decrease the risk of DCS or create a ‘safe’ environment. It may create incremental differences and slightly reduce overall risk but does not make the risk zero. There are other physiological factors that also contribute to the risk of DCS that may have a larger impact (see 7.0 Other Physiological Factors in the findings section). Based on the available evidence and the risk of current decompression exposures (based on current NASA protocols and NASA-STD-3001 requirements to limit the risk of DCS), it is not recommended to screen for PFOs in any spaceflight or ground testing participants. The best strategy to reduce the risk of DCS is to create as safe an environment as possible in every scenario, through effective prebreathe protocols, safety, and the capability to rapidly treat DCS should symptoms occur. Based on opinion, no specific research is required at this time to further characterize PFOs with DCS and altitude exposure, due to the low risk and preference to institute adequate safe protocols and ensuring treatment availability both on the ground and in spaceflight. For engineering protocols conducted on the ground, it should be ensured that the same level of treatment capability (treatment chamber in the immediate vicinity of the testing) is provided as during research protocols. The ability to immediately treat a DCS case is critical in ensuring the safety of the test subjects. The full summary report includes detailed background information, discussion points from the working group, and conclusions and recommendations. The findings from the working group and resulting summary report will help to inform key stakeholders in decision-making processes for future ground testing and spaceflight operations with the main goal of protecting crew health and safety to ensure overall mission success.
Summary Report About the Author
Sarah D. Childress
Share
Details
Last Updated Dec 31, 2024 Related Terms
Office of the Chief Health and Medical Officer (OCHMO) Human Health and Performance Humans in Space International Space Station (ISS) Explore More
2 min read Station Science Top News: Dec. 20, 2024
Article 2 weeks ago 4 min read Artemis II Core Stage Vertical Integration Begins at NASA Kennedy
Article 2 weeks ago 3 min read NASA, Axiom Space Change Assembly Order of Commercial Space Station
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
This article is from the 2024 Technical Update.
The NASA Engineering and Safety Center (NESC) has developed an analytical model that predicts diffusion between two gases during piston purging of liquid hydrogen (LH2) tanks. This model helps explain dramatic helium savings seen in a recent Kennedy Space Center (KSC) purge, shows that undesired turbulent mixing occurred in Space Shuttle External Tank purges, and is applicable to future helium purges of the Space Launch System Core Stage LH2 tanks.
Background
In 2023, work was completed on a new 1.3-million-gallon (174,000 standard cubic feet (scf)) liquid hydrogen tank at KSC in support of the Space Launch System[1], see Figure 1. Per contract, the vendor delivered this tank filled with gaseous nitrogen, leaving KSC ground operations the task of replacing the nitrogen with helium: a necessary step prior to introducing liquid hydrogen, which would freeze the nitrogen. Prior helium/nitrogen purges on the Apollo/Space Shuttle era 850,000-gallon (114000 scf) LH2 tanks were performed by pumping
out the nitrogen, introducing helium, drawing samples, and then repeating if necessary. However, the new tank did not have a vacuum port, so instead, it was decided to introduce the helium from the top of the tank and push the nitrogen out of the bottom. Two million scf of helium was obtained and made ready for fear the two gases would mix, resulting in a long and expensive purge. Surprisingly, this top-down, or piston purge, resulted in a rapid replacement of the nitrogen with helium, using only 406,000 scf of helium, about 1.6 million scf less than planned (at $1/scf this is a $1.6 million dollar savings). To better understand this remarkable result, the NESC was asked to address the questions; why did this work so well and can it be improved further?
Figure 1: The new 1.3-million-gallon LH2 tank Upon realizing that the purge was diffusion limited and could be modelled, variations were studied, leading to three important conclusions. The flow rate should be increased until the onset of turbulent mixing; once started, the purge should not be stopped because this allows additional diffusion to occur; and trying to improve the purge by varying temperature or pressure has little benefit. Purging of the huge LH2 spheres is rare, but purging of flight tanks is common. In 2008, purge data from three Space Shuttle External Tanks was measured using a mass spectrometer and the NESC was asked to apply the diffusion model to this data. Doing this showed
evidence that turbulent mixing occurred indicating that the flow rates needed to be decreased. Having such a model has provided insight into the use of piston-type helium purges at KSC, with the goal of saving helium and manpower. This work is now directly applicable to purging the LH2 tank on the Space Launch System Core Stage.
The Binary Gas Sensor
During past purges, gas samples were taken to a lab to indicate the status of the purge but doing that for a piston purge would introduce time delays, allowing unwanted diffusion to take place. Fortuitously, an independent NESC assessment[4] was evaluating a binary gas sensor, with an excellent combination of cost, size, power, and weight to implement in the field, providing rapid real-time monitoring of the purge gas ratio. Using this sensor made the piston purging of the new LH2 tank successful.
References
Fesmire, J.; Swanger, A.; Jacobson, J; and Notardonato, W.: “Energy efficient
large-scale storage of liquid hydrogen,” In IOP Conference Series: Materials
Science and Engineering, vol. 1240, no. 1, p. 012088. IOP Publishing, 2022. Youngquist, R.; Arkin C.; Nurge, M.; Captain, J.; Johnson, R.; and Singh, U.:
Helium Conservation by Diffusion Limited Purging of Liquid Hydrogen Tanks,
NASA/TM-20240007062, June 2024. Singh, U.: Evaluation and Testing of Anaerobic Hydrogen Sensors for the
Exploration Ground Systems Program, NASA/TM-20240012664, Sept. 2024. View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ESI24 Haghighi Quadchart
Azadeh Haghighi
University of Illinois, Chicago
In-space manufacturing and assembly are vital to NASA’s long-term exploration goals, especially for the Moon and Mars missions. Deploying welding technology in space enables the assembly and repair of structures, reducing logistical burdens and supply needs from Earth. The unique challenges and extreme conditions of space–high thermal variations, microgravity, and vacuum–require advanced welding techniques and computational tools to ensure reliability, repeatability, safety, and structural integrity in one-shot weld scenarios. For the first time, this project investigates these challenges by focusing on three key factors: (1) Very low temperatures in space degrade the weldability of high thermal conductivity materials, like aluminum alloys, making it harder to achieve strong, defect-free welds. (2) The extreme vacuum in space lowers the boiling points of alloying elements, altering the keyhole geometry during welding. This selective vaporization changes the weld’s final chemical composition, affecting its microstructure and properties. (3) Microgravity nearly eliminates buoyancy-driven flow of liquid metal inside the molten pool, preventing gas bubbles from escaping, which leads to porosity and defects in the welds. By examining these critical factors using multi-scale multi-physics models integrated with physics-informed machine learning, and forward/inverse uncertainty quantification techniques, this project provides the first-ever real-time digital twin platform to evaluate welding processes under extreme space/lunar conditions. The models are validated through Earth-based experiments, parabolic flight tests, and publicly available data from different databases and agencies worldwide. Moreover, the established models will facilitate extendibility to support in-situ resource utilization on the Moon, including construction and repair using locally sourced materials like regolith. The established fundamental scientific knowledge will minimize trial-and-error, enable high-quality one-shot welds in space, and reduce the need for reworks, significantly reducing the costs and time needed for space missions.
Back to ESI 2024
Keep Exploring Discover More Topics From STRG
Space Technology Mission Directorate
STMD Solicitations and Opportunities
Space Technology Research Grants
About STRG
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.