Jump to content

Recommended Posts

  • Publishers
Posted

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

2025 Seminar Series

Throughout 2025, the NASA History Office is presenting a seminar series on the topic of Aerospace Latin America. This series will explore the origins, evolution, and historical context of aerospace in the region since the dawn of the Space Age, touching on a broad range of topics including aerospace infrastructure development, space policy and law, Earth science applications, and much more.

This seminar series is part of a collaborative effort to gather insights and research that will conclude in an anthology of essays to be published as a NASA History Special Publication. Individual presentations will be held virtually bi-weekly or monthly.

Composite image of Earth and the Moon as seen by the Galileo spacecraft
During a gravity assist in 1992, the Galileo spacecraft took images of Earth and the Moon. Separate images were combined to generate this composite which features a view of the Pacific Ocean and Central and South America.
NASA/JPL/USGS

Upcoming Presentations

“Governing the Moon: A History”

Stephen Buono (University of Chicago)

Thursday, February 6 at 1pm CST

In this talk, Stephen Buono will provide a nuanced history of the unratified Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, more commonly known as the Moon Treaty. Buono will illuminate the treaty’s deep origins, the contributions of international space lawyers, the details of the negotiating process, the role played by the United States in shaping the final text, and the contributions of the treaty’s single most important author, Argentine lawyer, Aldo Armando Cocca.

“A God’s Eye View: Aviators and the Re-Conquest of Latin America”

Pete Soland(University of Houston—Downtown)

Thursday, February 20 at 1pm CST

This talk scrutinizes the aviator-conquistador metaphor. It examines airplane pilots as personifying high modernism and the technological sublime in Latin America from the turn of the century through the early Space Age, when spaceships and astronauts eclipsed airplanes and aviators. Repeated invocations of the conquistador as a metaphor for the aviator’s social role–and the conquest as an analogy for the goals of aviation programs–illustrate how elites promoted their modernization initiatives to national publics.

How to Attend

These presentations will be held via Microsoft Teams. For details on how to attend the meetings, join the NASA History mailing list to receive updates. Just send a blank email to history-join@lists.hq.nasa.gov to join. Alternatively, send us an email to receive a link for the next meeting.

Share

Details

Last Updated
Jan 16, 2025

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The NASA History Office brings you the new Spring 2025 issue of NASA History News & Notes reflecting on some of the transitional periods in NASA’s history, as well as the legacies of past programs. Topics include NASA’s 1967 class of astronauts, historic experiments in airborne astronomy, NASA’s aircraft consolidation efforts in the 1990s, lightning observations from space, the founding of the NACA, the DC-8 airborne science laboratory, and more!

      Volume 42, Number 1
      Spring 2025
      Featured Articles
      From the Chief Historian
      By Brian Odom
      In the first few months of 2025, NASA will celebrate several significant anniversaries, including the 110th anniversary of the National Advisory Committee for Aeronautics (NACA) (March 3), the 55th anniversary of the launch of Apollo 13 (April 11), and the 35th anniversary of the launch of the Hubble Space Telescope (April 24). Celebrating these important milestones is a way for us as an agency and for the public to reflect upon where we have been and what we have accomplished and to think about what we might accomplish next. Continue Reading
      The XS-11 and the Transition Away from Mandatory Jet Pilot Training for NASA Astronauts
      By Jennifer Ross-Nazzal
      Flying in space has been associated with pilots ever since 1959, when NASA announced its first class of astronauts, known as the Mercury 7. Part of being a professional astronaut meant you were a certified jet pilot. Even the scientist-astronauts, so named to differentiate them from the astronauts assigned to the Mercury and Gemini missions, selected in 1965 and in 1967, received pilot training. Until NASA better understood the impact of weightlessness on the human body, Robert R. Gilruth, head of the Manned Spacecraft Center (MSC) in Houston, believed all astronauts should meet this qualification. But when five scientist-astronauts from the 1967 class had a rocky transition, leading them to resign—due to their disinterest in flying at the cost of their scientific training and no spaceflight opportunities—it eventually led NASA to rethink their idea of having all astronauts become jet pilots. Continue Reading
      Portrait of NASA’s 1967 group of astronauts. Seated at the table, left to right, are Philip K. Chapman, Robert A. R. Parker, William E. Thornton, and John A. Llewellyn. Standing, left to right, are Joseph P. Allen IV, Karl G. Henize, Anthony W. England, Donald L. Holmquest, Story Musgrave, William B. Lenoir, and Brian T. O’Leary.NASA The High-Flying Legacy of Airborne Observation: How Experimental Aircraft Contributed to Astronomy at NASA
      By Lois Rosson
      In June 2011, the Stratospheric Observatory for Infrared Astronomy (SOFIA) chased down Pluto’s occultation of a far-away star. … SOFIA’s 2011 observation of Pluto followed up on a historic 1988 observation made by the airborne Kuiper Airborne Observatory (KAO) that proved that Pluto had an atmosphere at all. The technical versatility of both flights, conducted from aircraft hurtling stabilized telescopes through the air, speaks to the legacy of airborne astronomical observation at NASA. But how did this idiosyncratic format emerge in the first place? Airborne astronomy, in which astronomical observations are made from a moving aircraft, was attempted almost as soon as airplanes themselves were developed. Continue Reading
      NASA’s Tortuous Effort to Consolidate its Aircraft
      By Robert Arrighi
      Thirty years ago, on January 6, 1995, NASA Administrator Dan Goldin announced, “We’ve started a revolution at NASA. It’s real. We have a road map for change. We’ve already begun.” Thus began one of the agency’s most daunting endeavors, a top-to-bottom reassessment of NASA’s processes, programmatic assignments, and staffing levels. One of the most controversial aspects of this effort was the proposal to transfer nearly all of the agency’s research aircraft to Dryden Flight Research Center (today known as Armstrong). Continue Reading
      Three ER-2 Aircraft in formation over Golden Gate Bridge, San Francisco, CA on their final flight out of NASA Ames Research Center before redeployment to NASA’s Dryden Flight Research Center, now known as NASA Armstrong.NASA/Eric James The Space Between: Mesoscale Lightning Observations and Weather Forecasting, 1965–82
      By Brad Massey
      Skylab astronaut Edward G. Gibson looked down at Earth often during his 84 days on NASA’s first space station. From his orbital vantage point, Gibson took in the breathtaking views of our planet’s diverse landscapes. He also noted the interesting behavior of the planet’s most powerful electrical force: lightning. … Gibson’s words were of great interest to the lightning researchers affiliated with NASA’s Severe Storms and Local Research Program and others who believed observing Earth’s lightning from low Earth orbit generated valuable data that meteorologists could use to better forecast dangerous storm characteristics and behavior. With these motivations in mind, researchers created new Earth- and space-based experiments from the mid-1960s to the first Space Shuttle missions in the early 1980s that observed lightning on a regional level. Continue Reading
      Adding Color to the Moon: Jack Kinzler’s Oral History Interviews
      By Sandra Johnson
      Manned Spacecraft Center (MSC) Director Robert R. Gilruth placed a call to Jack Kinzler less than four months before the Apollo 11 launch. Gilruth asked him to attend a meeting with a high-level group of individuals from both MSC and NASA Headquarters to discuss ideas for celebrating the first lunar landing. Kinzler, in his capacity as the chief of the Technical Services Division, arrived ready to present his suggestions for commemorating the achievement. Continue Reading
      Apollo 11 astronaut Edwin E. “Buzz” Aldrin Jr. poses for a photograph beside the deployed United States flag during the mission’s extravehicular activity (EVA) on the lunar surface.NASA The Founding of the NACA
      By James Anderson
      One hundred ten years ago this month, NASA’s predecessor organization, the National Advisory Committee for Aeronautics (NACA), was founded. The date of the anniversary marks the passage of a rider to a naval appropriations bill that established the NACA for the modest sum of $5,000 annually. Telling the story of the NACA’s founding in this manner—using March 3, 1915, as the moment in time to represent the NACA’s beginning—is true, but it overlooks two crucial aspects of the founding. The founding was both a culmination and a turning point for science and aeronautics in the United States. Continue Reading
      Remembering the DC-8 Airborne Science Laboratory at NASA
      By Bradley Lynn Coleman
      The NASA History Office and NASA Earth Science Division cohosted a workshop on the recently retired NASA DC-8 Airborne Science Laboratory (1986–2024) at the Mary W. Jackson NASA Headquarters Building in Washington, DC, October 24 and 25, 2024. The workshop celebrated the history of the legendary aircraft; documented DC-8–enabled scientific, engineering, education, and outreach activities; and captured lessons of the past for future operators. Continue Reading
      The DC-8 in flight near Lone Pine, California. NASA/Jim Ross Download the Spring 2025 Edition More Issues of NASA History News and Notes Share
      Details
      Last Updated Apr 01, 2025 Related Terms
      NASA History Keep Exploring Discover Related Topics
      NASA History
      History Publications and Resources
      NASA Archives
      NASA Oral Histories
      View the full article
    • By NASA
      On March 23, 1965, the United States launched the Gemini III spacecraft with astronauts Virgil “Gus” Grissom and John Young aboard, America’s first two-person spaceflight. Grissom earned the honor as the first person to enter space twice and Young as the first member of the second group of astronauts to fly in space. During their three-orbit flight they carried out the first orbital maneuvers of a crewed spacecraft, a critical step toward demonstrating rendezvous and docking. Grissom and Young brought Gemini 3 to a safe splashdown in the Atlantic Ocean. Their ground-breaking mission led the way to nine more successful Gemini missions in less than two years to demonstrate the techniques required for a Moon landing. Gemini 3 marked the last spaceflight controlled from Cape Kennedy, that function shifting permanently to a new facility in Houston. 

      In one of the first uses of the auditorium at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, managers announce the prime and backup Gemini III crews. NASA NASA astronauts Virgil “Gus” Grissom and John Young, the Gemini III prime crew. NASA Grissom, foreground, and Young in their capsule prior to launch.NASA On April 13, 1964, just five days after the uncrewed Gemini I mission, in the newly open auditorium at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Director Robert Gilruth introduced the Gemini III crew to the press. NASA assigned Mercury 4 veteran Grissom and Group 2 astronaut Young as the prime crew, with Mercury 8 veteran Walter Schirra and Group 2 astronaut Thomas Stafford serving as their backups. The primary goals of Project Gemini included proving the techniques required for the Apollo Program to fulfil President John F. Kennedy’s goal of landing a man on the Moon and returning him safely to Earth before the end of the 1960s. Demonstrating rendezvous and docking between two spacecraft ranked as a high priority for Project Gemini.  

      Liftoff of Gemini III.NASA The uncrewed Gemini I and II missions validated the spacecraft’s design, reliability, and heat shield, clearing the way to launch Gemini III with a crew. On March 23, 1965, after donning their new Gemini spacesuits, Grissom and Young rode the transfer van to Launch Pad 19 at Cape Kennedy in Florida. They rode the elevator to their Gemini spacecraft atop its Titan II rocket where technicians assisted them in climbing into the capsule. At 9:24 a.m. EST, the Titan’s first stage engines ignited, and Gemini III rose from the launch pad. 

      The Mission Control Center at Cape Kennedy in Florida during Gemini III, controlling a human spaceflight for the final time.NASA The Mission Control Center at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, monitoring the Gemini III mission.NASA Five and a half minutes after launch, the Titan II’s second stage engine cut off and the spacecraft separated to begin its orbital journey. Grissom became the first human to enter space a second time. While engineers monitored the countdown from the Launch Pad 19 blockhouse, once in orbit flight controllers in the Mission Control Center at the Cape took over. Controllers in the new Mission Control Center at the Manned Spacecraft Center, now the Johnson Space Center in Houston, staffed consoles and monitored the mission in a backup capacity. Beginning with Gemini IV, control of all American human spaceflights shifted permanently to the Houston facility. 
      Gemini III entered an orbit of 100 miles by 139 miles above the Earth. Near the end of the first orbit, while passing over Texas, Grissom and Young fired their spacecraft’s thrusters for one minute, 14 seconds. “They appear to be firing good,” said Young, confirming the success of the maneuver. The change in velocity adjusted their orbit to 97 miles by 105 miles. A second burn 45 minutes later altered the orbital inclination by 0.02 degrees. Another task for the crew involved testing new food and packaging developed for Gemini. As an off-the-menu item, Young had stowed a corned beef on rye sandwich in his suit pocket before flight, and both he and Grissom took a bite before stowing it away, concerned about crumbs from the sandwich floating free in the cabin.
      Shortly after splashdown, Gemini III astronaut Virgil “Gus” Grissom exits the spacecraft as crewmate John Young waits in the life raft. NASA Sailors hoist the Gemini III spacecraft aboard the prime recovery ship U.S.S. Intrepid.NASA Young, left, and Grissom stand with their spacecraft aboard Intrepid. NASA Near the end of their third revolution, Grissom and Young prepared for the retrofire burn to bring them out of orbit. They oriented Gemini III with its blunt end facing forward and completed a final orbital maneuver to lower the low point of their orbit to 45 miles, ensuring reentry even if the retrorockets failed to fire. They jettisoned the rearmost adapter section, exposing the retrorockets that fired successfully, bringing the spacecraft out of orbit. They jettisoned the retrograde section, exposing Gemini’s heat shield. Minutes later, they encountered the upper layers of Earth’s atmosphere at 400,000 feet, and he buildup of ionized gases caused a temporary loss of communication between the spacecraft and Mission Control. At 50,000 feet, Grissom deployed the drogue parachute to stabilize and slow the spacecraft, followed by the main parachute at 10,600 feet. Splashdown occurred in the Atlantic Ocean near Grand Turk Island, about 52 miles short of the planned point, after a flight of 4 hours, 52 minutes, 31 seconds. 
      Gemini III astronauts Virgil “Gus” Grissom, left, and John Young upon their return to Cape Kennedy in Florida. NASA Grissom and Young at the postflight press conference. NASA The welcome home ceremony for Grissom and Young at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston.NASA A helicopter recovered Grissom and Young and delivered them to the deck of the U.S.S. Intrepid, arriving there one hour and 12 minutes after splashdown. On board the carrier, the astronauts received a medical checkup and a telephone call from President Lyndon B. Johnson. The ship sailed to pick up the spacecraft and sailors hoisted it aboard less than three hours after landing. The day after splashdown, Grissom and Young flew to Cape Kennedy for debriefings, a continuation of the medical examinations begun on the carrier, and a press conference. Following visits to the White House, New York, and Chicago, the astronauts returned home to Houston on March 31. The next day, Gilruth welcomed them back to the Manned Spacecraft Center, where in front of the main administration building, workers raised an American flag that Grissom and Young had carried on their mission. That flag flew during every subsequent Gemini mission. 

      During the Gemini III welcome home ceremony in front of the main administration building at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, workers raise an American flag that the astronauts had carried on their mission. NASA
      Explore More
      5 min read 60 Years Ago: Gemini 1 Flies a Successful Uncrewed Test Flight
      Article 12 months ago 6 min read 60 Years Ago: Uncrewed Gemini 2 Paves the Way for the First Crewed Mission
      Article 2 months ago 6 min read Artemis I Mission Control at a Glance
      Article 3 years ago View the full article
    • By NASA
      The high-rise bridge that serves as the primary access point for employees and visitors to NASA’s Kennedy Space Center in Florida now is fully operational. In the late hours of March 18, 2025, the Florida Department of Transportation (FDOT) opened the westbound portion of the NASA Causeway Bridge, which spans the Indian River Lagoon and connects NASA Kennedy and Cape Canaveral Space Force Station to the mainland.
      This new bridge span (right side of photo) sits alongside its twin on the eastbound side, which has accommodated traffic in both directions since FDOT opened it on June 9, 2023. The new structure replaces the old two-lane drawbridge which operated at that location for nearly 60 years.
      “The old drawbridge served us well, witnessing decades of spaceflights since the Apollo era and supporting Kennedy’s transition to a multi-user spaceport,” said Kennedy’s Acting Director Kelvin Manning. “The new bridge will see NASA send American astronauts back to the Moon and on to Mars, and it will support the continued rapid growth of America’s commercial space industry here at Earth’s premier spaceport.”
      At 4,025 feet long, the new NASA Causeway Bridge is about 35% longer than its predecessor, featuring a 65-foot waterway clearance and a channel wide enough to handle larger vessels carrying cargo necessary for Kennedy to continue launching humanity’s future.
      The bridge sits on over 1,000 concrete pilings which total more than 22 miles in length. Nearly 270 concrete I-beams, each weighing hundreds of thousands of pounds, support the bridge, along with over 40,000 cubic yards of concrete and over 8.7 million pounds of steel. All 110 spans of the old drawbridge were demolished during the construction, with much of the material recycled for future projects.
      A $90 million federal infrastructure grant secured in July 2019 by Space Florida via the U.S. Department of Transportation funded nearly 50% of the drawbridge replacement as well the widening of nearby Space Commerce Way. NASA and the state of Florida provided the remaining funding for the upgrades.
      Photo credit: NASA/Glenn Benson
      View the full article
    • By NASA
      NASA’s Office of STEM Engagement at Johnson Space Center offers Texas high school students a unique gateway to the world of space exploration through the High School Aerospace Scholars (HAS) program. This initiative gives juniors hands-on experience, working on projects that range from designing spacecraft to planning Mars missions. 

      Nearly 30 participants who have been hired by NASA in the past five years are HAS alumni. Their stories highlight the program’s impact on students—inspiring innovation, fostering collaboration, unlocking their potential as they move forward into STEM careers. 

      Discover how the HAS experience has shaped these former students’ space exploration journey.  

      Jaylon Collins: Designing the Future of Spaceflight 

      Jaylon Collins always knew he wanted to study the universe but HAS shifted his perspective on what a STEM career could be. 
      “HAS brought a newfound perspective on what my STEM career could look like, and that shift led me to where I am today,” Collins said. “The coursework, NASA-led seminars, and space exploration research showed me that I could do direct design work to aid humanity’s exploration of the cosmos. I didn’t want to only learn about our universe—I wanted to help explore it.” 
      Jaylon Collins with his parents at the University of Texas at Austin after being accepted as a student class of 2028. “HAS showed me that a career in STEM doesn’t require a label, only your passion,” Collins said. “I saw that STEM could lead to endless career paths, and the guide was whatever I was most passionate about.” 

      He saw firsthand how engineers tackle the challenges of spaceflight, from designing spacecraft to solving complex mission scenarios. His strong performance in the program earned him an invitation to Moonshot, a five-day virtual challenge where NASA scientists and engineers mentor students through an Artemis-themed mission. His team developed a Mars sample return mission, an experience that taught him valuable lessons in teamwork. 

      “We combined our knowledge to design solutions that fit our mission profile, and I learned how problem-solving goes beyond the obvious tools like math and science,” he said. “Instead, it entails finding unique methods that trade off certain elements to bolster others and finding the optimal solution for our problem. HAS taught me to listen more than talk and take constructive feedback to create a solid plan.”

      Now studying aerospace engineering at the University of Texas at Austin, Collins credits HAS with building his professional network and opening doors to NASA internship opportunities. 

      “I learned so much from seminars, my peers, and my Moonshot mentors about not only my academic future but also my prospective career,” he said. “My HAS experience has granted me a web of internship opportunities at NASA through the Gateway Program, and I hope that I can leverage it soon in L’Space Academy’s Lucy Internship.” 
      Jaylon Collins at Johnson Space Center with the 2024 astronaut graduate class.  Collins hopes to contribute to NASA’s mission by developing solutions for deep space travel. Beyond that, he wants to inspire the next generation. 

      “I believe that the goal of universal knowledge is to reverberate the passions I have onto other curious dreamers,” he said. “Having mentors who teach the curious is the way we progress and innovate as a society, and I am dedicated to being one of those mentors one day.” 

      Erin Shimoda: Guiding Astronauts to Safety 

      Erin Shimoda’s path to becoming an aerospace engineer did not start with a clear vision of her future. Growing up in a family full of engineers and scientists, she was already on the STEM path, but she did not know where to focus. HAS changed that. 

      “HAS exposed me to so many different things that an aerospace engineer does,” she said. “I learned about the history of humans in space, NASA’s missions, how to design 3D models, how to apply equations from math class to real-life scenarios.” 

      During the program’s summer experience, she and her team designed a mission to send humans to Mars. She credits the program with inspiring her to earn an aerospace engineering degree. 
      Official portrait of Erin Shimoda. NASA/Josh Valcarcel The HAS program also reshaped her understanding of what a STEM career could look like. “My mentors were incredible. They talked about their projects with such energy and passion. It made me want to feel that way about my own work,” she said. “I didn’t realize before how exciting and innovative working in STEM could be.” 

      Shimoda said every person she met through HAS was inspiring. “Just knowing that those people existed and worked at NASA helped push me to persevere and succeed in my undergraduate career. I had plenty of bumps in the road, but I had a goal in mind that others had achieved before me, so I knew I could, too.” 

      One of the biggest lessons she took from the program was the power of collaboration. In high school, she often felt like she was carrying the load on group projects, which left her with a negative view of working on a team. HAS changed that perspective. 

      “During HAS, everyone was very passionate about accomplishing our goal, so I was consistently supported by my peers,” she said. “That’s so true at NASA, too. Not one single person can build an entire mission to the Moon. We’re all so passionate about accomplishing the mission, so we always support each other and strive for excellence.”

      Shimoda also saw firsthand how diverse perspectives lead to better results. “There are many ways to come to a solution, and not every solution is right,” she said. “Collaboration leads to innovation and better problem-solving.” 
      Erin Shimoda stands in front of a presentation on the Launch Abort System for NASA’s Orion spacecraft and Space Launch System rocket.NASA/Robert Markowitz Now, Shimoda plays a key role in NASA’s Orion Program, ensuring astronaut safety through comprehensive ascent abort planning and procedures, and supporting Artemis recovery operations. She works on guidance, navigation, and control, predicting where the crew module and recovery hardware will land so teams—including the U.S. Navy—are in the right place at the right time. 

      “It’s exciting because we get to go ‘in the field’ on a U.S. Navy ship during training. Last year, I spent a week on a Navy ship, and seeing everything come together was incredible,” she said. 

      Her advice for students exploring STEM? “Try every opportunity possible! I joined almost every club imaginable. When I saw the HAS poster in front of my high school’s library, I thought to myself, ‘Well, I’m not in anything space-related yet!’ and the rest is history.” 

      Looking ahead, she is eager for what is to come. “I’m especially excited for Artemis III, where I’ll be directly involved in recovery operations,” Shimoda said. “I hope that all this work propels us to a future with a sustained human presence on the Moon.” 

      Hallel Chery: Aspiring Astronaut and Emerging Leader 

      Hallel Chery is a high school senior who will pursue a degree in mechanical engineering and materials science at Harvard College, with her sights set on becoming both an engineer and an astronaut.  

      She completed all three stages of HAS: the online course, the virtual Moonshot challenge, and the five-day on-site experience at Johnson. Balancing the program with academics and leading a school-wide tutoring club pushed her limits—but also broadened her confidence. 

      “I learned that I could take on a tremendous amount of work at one time,” she said. “This realization has helped me become more ambitious in my future plans.” 
      A portrait of Hallel Chery during her time in the High School Aerospace Scholars program. Moonshot was her proving ground. Tasked with redesigning a module for NASA’s future Gateway lunar space station, she led a team of eight HAS scholars—none of whom she had met before—through an intense, weeklong mission. Their work was presented to NASA scientists and engineers and her group landed among the top teams in the challenge. 

      “The experience strengthened my confidence in my abilities as a leader,” said Chery. “I learned that I thrive under pressure and am well prepared to tackle any challenge, technical or interpersonal, no matter how difficult it is.” 

      “Moonshot exposed me for the first time to true, deep teamwork,” she said. “Interacting almost non-stop with the same people over one week in a high stakes situation truly taught me about the dynamics of how teams work, the value of teamwork, and being an effective leader. This, coupled with the program’s emphasis on the importance of teamwork have firmly ingrained in me the essentiality of this core NASA value.”  

      While at Johnson, Chery toured the Space Vehicle Mockup Facility, watched astronauts suit up at the Neutral Buoyancy Laboratory, and visited the Mission Control Center. “Spending only a few days at Johnson, I can truly say that as an aspiring astronaut, being there felt just like home,” Chery said.  
      Hallel Chery in a spacesuit mockup at Johnson Space Center. “Because of HAS, I directly visualize myself working in a team to solve the problems I wanted to tackle instead of primarily focusing on the individual accomplishments that will solve them,” she said. “The program taught me how essential teamwork is to effective problem solving and innovation.” 

       The advice she has for the next generation is to keep exploring and to answer the question: What do you want to contribute for the good of the world? 

      HAS also introduced her to professional networking early in her academic career. Engaging with NASA professionals provided insight into the agency’s work culture and internship opportunities. 

      Now, as she prepares for her future in mechanical engineering and materials science, Chery is determined to apply what she has learned. 

      She is particularly grateful for the mentorship of NASA consultant Gotthard Janson, who provided encouragement and guidance throughout the HAS journey.  

      “The opportunity to connect with great professionals like him has provided additional wisdom and support as I grow through my academic and professional career,” she said.  

      Looking ahead, Chery aims to design space habitats, create innovative exercise solutions, and develop advanced materials for use in space.  

      “I want to help propel humanity forward—on Earth, to the Moon, Mars, and beyond—while inspiring others in the Artemis Generation,” she said. “Building and launching my rocket at Johnson felt like launching my future—one dedicated to contributing to NASA and humanity.” 

      Johnson Space Center will showcase its achievements at the Texas Capitol for Space Day Texas on Tuesday, March 25. The High School Aerospace Scholars program will have a booth, and NASA will have interactive exhibits highlighting the programs and technologies that will help humanity push forward to the Moon and Mars.

      Learn more about NASA’s involvement here.
      View the full article
    • By Space Force
      The DAF announced its validation plan in response to the Restoring America’s Fighting Force Task Force established in January 2025.
      View the full article
  • Check out these Videos

×
×
  • Create New...