Jump to content

Recommended Posts

Posted
Quantum computing, a transformative field leveraging quantum mechanics, has the potential to solve complex problems far beyond the reach of classical computers. While it promises significant advancements, it also poses risks, such as breaking cryptographic codes, threatening global data security. 

Quantum%20computing.jpg

For example: At NASA's Quantum Artificial Intelligence Laboratory (QuAIL), experiments revealed unprecedented computational power and successfully solved the unsolvable problem. However, the quantum computer began generating independent and unconventional outputs, leading to speculation that it could think for itself or even connect with extraterrestrial intelligence. Concerned about the implications, NASA halted its quantum computing project in 2023, though some believe the research continued in secret. 

Separately, researchers have hypothesized that advanced extraterrestrial civilizations might use black holes as quantum computers for computation and communication. highlighting the mysterious potential of these quantum systems to explore phenomena beyond Earthly understanding. 

A fictional scenario (watch video below) illustrates the dangers of quantum technology spiraling out of control: 

A mysterious data transfer lights up NSA monitors at 3 AM. Within hours, hospital records flash across Times Square billboards. Dating app messages spill onto every screen in the city. 

Bank accounts vanish. Traffic lights freeze. Autonomous vehicles crash through shopping malls. Intelligence agencies scramble as decades of encrypted messages suddenly unlock. Someone or something has broken the unbreakable - the mathematical foundations that protect everything from banking passwords to nuclear launch codes. 

The quantum apocalypse arrives years ahead of schedule. But as chaos spreads, patterns start to surface. The timing seems too perfect, the targets too precise. 

Deep beneath the Pentagon, analysts notice something strange: some messages were decrypted months ago. The chaos isn't random - it's cover for something bigger.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      This artist’s illustration represents the results from a new study that examines the effects of X-ray and other high-energy radiation unleashed on potential exoplanets from Wolf 359, a nearby red dwarf star. Researchers used Chandra and XMM-Newton to study the impact of steady X-ray and energetic ultraviolet radiation from Wolf 359 on the atmospheres of planets that might be orbiting the star. They found that only a planet with greenhouse gases like carbon dioxide in its atmosphere and at a relatively large distance away from Wolf 359 would have a chance to support life as we know it.X-ray: NASA/CXC/SAO/S.Wolk, et al.; Illustration: NASA/CXC/SAO/M.Weiss; Image processing: NASA/CXC/SAO/N. Wolk Planets around other stars need to be prepared for extreme weather conditions, according to a new study from NASA’s Chandra X-ray Observatory and ESA’s (European Space Agency’s) XMM-Newton that examined the effects of X-rays on potential planets around the most common type of stars.
      Astronomers found that only a planet with greenhouse gases in its atmosphere like Earth and at a relatively large distance away from the star they studied would have a chance to support life as we know it around a nearby star.  
      Wolf 359 is a red dwarf with a mass about a tenth that of the Sun. Red dwarf stars are the most common stars in the universe and live for billions of years, providing ample time for life to develop. At a distance of only 7.8 light-years away, Wolf 359 is also one of the closest stars to the solar system.
      “Wolf 359 can help us unlock the secrets around stars and habitability,” said Scott Wolk of the Center for Astrophysics | Harvard & Smithsonian (CfA), who led the study. “It’s so close and it belongs to such an important class of stars – it’s a great combination.”
      Because red dwarfs are the most prevalent types of stars, astronomers have looked hard to find exoplanets around them. Astronomers have found some evidence for two planets in orbit around Wolf 359 using optical telescopes, but those conclusions have been challenged by other scientists.  
      “While we don’t have proof of planets around Wolf 359 yet, it seems very possible that it hosts multiple planets,” Wolk added. “This makes it an excellent test bed to look at what planets would experience around this kind of star.”
      Wolk and his colleagues used Chandra and XMM to study the amounts of steady X-rays and extreme ultraviolet (UV) radiation – the most energetic type of UV radiation – that Wolf 359 would unleash on the possible planets around it.
      They found that Wolf 359 is producing enough damaging radiation that only a planet with greenhouse gases like carbon dioxide in its atmosphere – and located at a relatively large distance from the star – would likely be able to sustain life.
      “Just being far enough away from the star’s harmful radiation wouldn’t be enough to make it habitable,” said co-author Vinay Kashyap, also of CfA. “A planet around Wolf 359 would also need to be blanketed in greenhouse gases like Earth is.”
      To study the effects of energetic radiation on the habitability of the planet candidates, the team considered the star’s habitable zone – the region around a star where liquid water could exist on a planet’s surface. 
      The outer limit of the habitable zone for Wolf 359 is about 15% of the distance between Earth and the Sun, because the red dwarf is much less bright than the Sun. Neither of the planet candidates for this system is located in Wolf 359’s habitable zone, with one too close to the star and the other too far out.
      “If the inner planet is there, the X-ray and extreme UV radiation it is subjected to would destroy the atmosphere of this planet in only about a million years,” said co-author Ignazio Pillitteri of CfA and the National Institute for Astrophysics in Palermo, Italy.
      The team also considered the effects of radiation on as-yet undetected planets within the habitable zone. They concluded that a planet like the Earth in the middle of the habitable zone should be able to sustain an atmosphere for almost two billion years, while one near the outer edge could last indefinitely, helped by the warming effects of greenhouse gases.
      Another big danger for planets orbiting stars like Wolf 359 is from X-ray flares, or occasional bright bursts of X-rays, on top of the steady, everyday output from the star. Combining observations made with Chandra and XMM-Newton resulted in the discovery of 18 X-ray flares from Wolf 359 over 3.5 days.
      Extrapolating from these observed flares, the team expects that much more powerful and damaging flares would occur over longer periods of time. The combined effects of the steady X-ray and UV radiation and the flares mean that any planet located in the habitable zone is unlikely to have a significant atmosphere long enough for multicellular life, as we know it on Earth, to form and survive. The exception is the habitable zone’s outer edge if the planet has a significant greenhouse effect.
      These results were presented at the 245th meeting of the American Astronomical Society in National Harbor, Maryland, and are being prepared for publication in a journal. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      Explore More
      3 min read How It Started, How It’s Going: Johnson Space Center Edition
      Article 23 hours ago 6 min read Ten NASA Science, Tech Instruments Flying to Moon on Firefly Lander
      Article 2 days ago 2 min read NASA, Partners Open Applications for CubeSat Summer Program
      Article 3 days ago View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of SUPREME-QG: Space-borne Ultra-Precise Measurement of the Equivalence Principle Signature of Quantum GravityNASA/Selim Shahriar Selim Shahriar
      Northwestern University, Evanston
      Progress in physics has largely been driven by the development and verification of new theories that unify different fundamental forces of nature. For example, Maxwell revolutionized physics with his unified theory of electricity and magnetism, and the Standard Model of particle physics provides a consistent description of all fundamental forces (electromagnetic, strong, and weak) except for gravity. The major barrier to completing the quest for unification is that General Relativity (GR), the current theory of gravity, cannot be reconciled with QM. Theories of Quantum Gravity (TQG), which are yet untested, prescribe modifications of both GR and QM in a manner that makes them consistent with each other. Tests of TQG represent arguably the greatest challenge facing our understanding of the Universe. The most promising way to test TQG is to search for violation of the Equivalence Principle (EP), a fundamental tenet of GR which states that all objects experience the same acceleration in a gravitational field. Violation of EP is characterized by a nonzero Eotvos parameter, Eta, defined as the ratio of the relative acceleration to the mean acceleration experienced by two objects with different inertial masses in a gravitational field. EP violations at the level of Eta < 10^(-18) arise in many versions of TQG (e.g., string theory). The most precise test of the EP to date has been carried out under the space-borne MICROSCOPE experiment employing classical accelerometers, constraining the value of Eta to <1.5×10^(-15). We propose to investigate the use of a radically new method that leverages quantum entanglement to test the EP with extreme precision, at the level of Eta ~ 10^(-20), using a space-borne platform. This method is described in a recent paper by us (PRD 108, 024011, ’23). It makes use of simultaneous Schroedinger Cat (SC) state atom interferometers (AIs) with two isotopes of Rb. Consisting of N=10^6 atoms, the SC state, which is a maximally entangled quantum state generated via spin-squeezing of cold atoms in an optical cavity, acts as a single particle, in a superposition of two collective states, enhancing the sensitivity by a factor of ~root(N)=10^3. Such large-N SC states are difficult to create and have not been observed yet, let alone leveraged for precision metrology. In another recent paper, we described a novel protocol, namely the generalized echo squeezing protocol (GESP), to overcome the challenges of creating such a state (PRA 107, 032610, ’23). We will demonstrate the functionality of this method in a testbed to enable a follow-on space-borne mission capable of testing the EP at the level of Eta ~ 10^(-20). If EP violation is observed, the version of TQG that agrees most closely with the result would form the foundation for a complete theory governing the universe, including its birth: the Big Bang. A null result would force physicists to conceive an entirely new approach to addressing the irreconcilability of GR and QM, fundamentally altering the course of theoretical physics. Either outcome would represent one of the greatest developments in our quest for understanding nature. The SC-state AI (SCAI), also holds the promise of revolutionary improvements in the precision of gravitational cartography and inertial navigation, when configured for simultaneous accelerometry and rotation sensing. The sensitivity of such a sensor, for one second averaging time, would be ~0.9 femto-g for accelerometry, and ~0.5 pico-degree/hour for rotation sensing. This would represent an improvement by a factor of ~10^5 over the best conventional accelerometer, and a factor of ~10^4 over the best conventional gyroscopes. As such, the SCAI would find widespread usage in defense as well as non-defense sectors, including deep-space exploration, for inertial navigation. A space-borne SCAI would be able to carry out gravitational cartography with a resolution far greater than that achieved using the GRACE-FO satellites.
      2025 Selections
      Facebook logo @NASATechnology @NASA_Technology


      Share
      Details
      Last Updated Jan 10, 2025 EditorLoura Hall Related Terms
      NIAC Studies NASA Innovative Advanced Concepts (NIAC) Program Keep Exploring Discover More NIAC Topics
      Space Technology Mission Directorate
      NASA Innovative Advanced Concepts
      NIAC Funded Studies
      About NIAC
      View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      The Canadarm2 removes materials science samples from the Kibo laboratory module's airlock. NASA The Materials ISS Experiment Flight Facility mounted on the outside of the International Space Station allows researchers to test the performance and durability of materials and devices. This is done by exposing items of interest to everything that makes the space environment harsh, including radiation, highly reactive atomic oxygen, microgravity, and extreme temperatures.  
      Currently, one suite on the platform holds MISSE-20-Commercial, an investigation conducting 12 experiments from different research teams. Among MISSE-20-Commercial is the Space Entanglement and Annealing Quantum Experiment (SEAQUE) which tests two technologies that could advance the field of quantum communications. The first technology is a novel method to transmit quantum data. This method could make way for a scalable quantum information network and provide the foundation of quantum cloud computing, a technology that holds the promise of operating millions of times faster than conventional computers. SEAQUE will also validate technology to “self-heal” its sensitive detectors against radiation damage using laser annealing, prolonging the life of these quantum tools in a space environment. 
      Diana Garcia  
      International Space Station Research Communications Team 
      Johnson Space Center 
      Keep Exploring Discover More Topics
      Benefits to Humanity
      Humans In Space
      International Space Station
      Space Station Research and Technology
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A natural color view from Cassini of Saturn with its Titan moon in the foreground in August 2012. Titan’s diameter is 50% larger than Earth’s moon.Credit: NASA NASA’s ambitious Cassini mission to Saturn in the late 1990s was one of the agency’s greatest accomplishments, providing unprecedented revelations about the esoteric outer planet and its moons. The complex undertaking was also a tremendous, yet bittersweet, achievement for the Lewis Research Center (today, NASA’s Glenn Research Center in Cleveland), which oversaw the rockets that propelled Cassini to Saturn. Cassini brought a close to over 35 years of Lewis’ management of NASA’s launch vehicles.
      Cassini Mission: 5 Things to Know About NASA Lewis’ Last Launch
      1. NASA Lewis Launched the Largest and Most Complex Deep-Space Mission to Date
      In the early 1980s, NASA began planning the first-ever in-depth study of the planet Saturn. The mission would use the Cassini orbiter designed by NASA’s Jet Propulsion Laboratory in Southern California and the European Space Agency’s Huygens lander. It was one of the heaviest and most complex interplanetary spacecraft ever assembled. Cassini’s plutonium power system and intricate flight path further complicated the mission.
      NASA Lewis was responsible for managing the launches of government missions involving the Centaur upper stage and the Atlas and Titan boosters. Cassini’s 6-ton payload forced Lewis to use the U.S. Air Force’s three-stage Titan IV, the most powerful vehicle available, and pair it with the most advanced version of the Centaur, referred to as G-prime.
      The Titan IV shroud in the Space Power Facility in October 1990. It was only the second test since the world-class facility had been brought back online after over a decade in standby conditions.Credit: NASA/Quentin Schwinn 2. Lewis Performed Hardware Testing for the Cassini Launch
      One of NASA Lewis’ primary launch responsibilities was integrating the payload and upper stages with the booster. This involved balancing weight requirements, providing adequate insulation for Centaur’s cryogenic propellants, determining correct firing times for the stages, and ensuring that that the large shroud, which encapsulated both the upper stage and payload, jettisoned cleanly after launch.
      By the time of Cassini, the center had been testing shrouds (including the Titan III fairing) in simulated space conditions for over 25 years. NASA’s Space Power Facility possesses the world’s largest vacuum chamber and was large enough to accommodate the Titan IV’s 86-foot-tall, 16-foot-diameter fairing. In the fall of 1990, the shroud was installed in the chamber, loaded with weights that simulated the payload, and subjected to atmospheric pressures found at an altitude of 72 miles.
      The system was successfully separated in less than half a second. Using simulated Cassini and Centaur vehicles, NASA engineers also redesigned a thicker thermal blanket that would protect Cassini’s power system from acoustic vibrations during liftoff.


      Members of NASA Lewis’ Launch Vehicle Directorate pose with a Centaur model in May 1979 to mark the 50th successful launch of the Atlas/Centaur.Credit: NASA/Martin Brown 3. Lewis Personnel Assisted with the Launch
      In late August 1997, a group of NASA Lewis engineers traveled to NASA’s Kennedy Space Center in Florida to make final preparations for the Cassini launch, working with Air Force range safety personnel at Patrick Air Force Base to ensure a safe launch under all circumstances.
      After an aborted launch two days earlier, the vehicle was readied for another attempt in the evening of October 14. Lewis personnel took stations in the Launch Vehicle Data Center inside Hangar AE to monitor the launch vehicle’s temperature, pressure, speed, trajectory, and vibration during the launch. The weather was mild, and the countdown proceeded into the morning hours of October 15 without any major issues.
      At 4:43 a.m. EDT, Titan’s first stage and the two massive solid rocket motors roared to life, and the vehicle rose into the dark skies over Florida. The Lewis launch team monitored the flight as the vehicle exited Earth’s atmosphere, Titan burned through its stages, and Centaur sent Cassini out of Earth orbit and on its 2-billion-mile journey to Saturn. After a successful spacecraft separation, Lewis’ responsibilities were complete. The launch had gone exceedingly well. 

      This illustration depicts the Cassini orbiter with the Huygens lander descending to the Titan moon (left) and Saturn in the background.Credit: NASA 4. Cassini-Huygens Brought a Close to Decades of Lewis Launch Operations
      Cassini-Huygens was NASA Lewis’ 119th and final launch, and it brought to a close the center’s decades of launch operations. The center had been responsible for NASA’s upper-stage vehicles since the fall of 1962. The primary stages were the Agena, which had 28 successful launches, and Centaur, which has an even more impressive track record and remains in service today.
      While Lewis continued to handle vehicle integration and other technical issues for launches of NASA payloads, in the 1980s, NASA began transferring launch responsibilities to commercial entities. In the mid-1990s, NASA underwent a major realignment that consolidated all launch vehicle responsibilities at NASA Kennedy.
      So it was with mixed emotions that around 20 Lewis employees and retirees gathered at the Cleveland center in the early morning hours of Oct. 15, 1997, to watch the Cassini launch. The group held its cheers for 40 minutes after liftoff until Lewis’ responsibilities concluded for the last time with the safe separation of Cassini from Centaur. “In many ways, this is the end of an era, across the agency and, in particular, here at Lewis,” noted one engineer from the Launch Vehicle and Transportation Office.

      The Titan IV/Centaur lifts off from Launch Complex 40 at Cape Canaveral on Oct. 15, 1997. NASA Lewis engineers were monitoring the launch from Hangar AE, roughly 3.5 miles to the south. Credit: NASA 5. Cassini Made Groundbreaking Discoveries That Inform Today’s NASA Missions
      Cassini’s seven-year voyage to Saturn included flybys of Venus (twice), Earth, and Jupiter so that the planets’ gravitational forces could accelerate the spacecraft. Cassini entered Saturn’s orbit in June 2004 and began relaying data and nearly half a million images back to Earth. Huygens separated from the spacecraft and descended to the surface of the Saturn’s largest moon, Titan, in January 2005. It was the first time a vehicle ever landed on a celestial body in the outer solar system.
      Cassini went on to make plunges into the planet’s upper atmosphere and through Saturn’s rings.  Scientific information on the mysterious planet, its moons, and rings led to the publication of nearly 4,000 technical papers. After over 13 years and nearly 300 orbits, on Sept. 15, 2017, NASA intentionally sent Cassini plummeting into the atmosphere where it burned up, ending its remarkable mission.
      NASA engineers used their experiences from the Cassini mission to help design the Europa Clipper, which is intended to perform flybys of Jupiter’s moon Europa. Europa Clipper launched on Oct. 14.

      Keep Exploring
      Read the “Sending Cassini to Saturn” Series from NASA Glenn Visit NASA’s Cassini-Huygens Website Visit the European Space Agency’s Cassini-Huygens Website Watch NASA Coverage of the Cassini Launch See NASA Glenn’s Historic Centaur Rocket Display
      Explore More
      24 min read NASA Celebrates Hispanic Heritage Month 2024
      Article 4 days ago 3 min read Pioneering NASA Astronaut Health Tech Thwarts Heart Failure
      Article 4 days ago 8 min read Kathryn Sullivan: The First American Woman to Walk in Space
      Article 5 days ago View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      SpaceX Crew-9 members (from left) Mission Specialist Aleksandr Gorbunov from Roscosmos and Commander Nick Hague from NASA pose for an official crew portrait at NASA’s Johnson Space Center in Houston, Texas.NASA/Josh Valcarel NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov are preparing to launch on the agency’s SpaceX Crew-9 mission to the International Space Station.
      The flight is the ninth crew rotation mission with SpaceX to the station under NASA’s Commercial Crew Program. The duo will lift off aboard the SpaceX Dragon spacecraft, which previously flew NASA’s SpaceX Crew-4, Axiom Mission 2 and Axiom Mission 3, from Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
      Once aboard the space station, Hague and Gorbunov will become members of the Expedition 72 crew and perform research, technology demonstrations, and maintenance activities. The pair will join NASA astronauts Don Petitt, Butch Wilmore, Suni Williams, as well as Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner.
      Wilmore and Williams, who launched aboard the Starliner spacecraft in June, will fly home with Hague and Gorbunov in February 2025.
      Launch preparations are underway, and teams are working to integrate the spacecraft and the SpaceX Falcon 9 rocket, including checkouts of a second flight rocket booster  for the mission. The integrated spacecraft and rocket will then be rolled to the pad and raised to the vertical position for a dry dress rehearsal with the crew and an integrated static fire test prior to launch.
      The Crew
      Nick Hague will serve as crew commander for Crew-9, making this his third launch and second mission to the space station. During his first launch in October 2018, Hague and his crewmate, Roscosmos’ Alexey Ovchinin, experienced a rocket booster failure, resulting in an in-flight, post-launch abort, ballistic re-entry, and safe landing in their Soyuz MS-10 spacecraft. Five months later, Hague launched aboard Soyuz MS-12 and served as a flight engineer aboard the space station during Expeditions 59 and 60. Hague has spent 203 days in space and conducted three spacewalks to upgrade space station power systems and install a docking adapter for commercial spacecraft.
      Born in Belleville, Kansas, Hague earned a bachelor’s degree in Astronautical Engineering from the United States Air Force Academy and a master’s degree in Aeronautical and Astronautical Engineering from the Massachusetts Institute of Technology in Cambridge, Massachusetts. Hague was selected as an astronaut by NASA in 2013. An active-duty colonel in the U.S. Space Force, Hague completed a developmental rotation at the Defense Department and served as the Space Force’s director of test and evaluation from 2020 to 2022. In August 2022, Hague resumed duties at NASA, working on the Boeing Starliner Program until this flight assignment.
      Follow @astrohague on X and Instagram.
      Roscosmos cosmonaut Aleksandr Gorbunov will embark on his first trip to the space station as a mission specialist for Crew-9. Born in Zheleznogorsk, Kursk region, Russia, he studied engineering with qualifications in spacecraft and upper stages from the Moscow Aviation Institute. Gorbunov graduated from the military department with a specialty in operating and repairing aircraft, helicopters, and aircraft engines. Before his selection as a cosmonaut in 2018, he worked as an engineer for Rocket Space Corp. Energia and supported cargo spacecraft launches from the Baikonur Cosmodrome. Gorbunov will serve as a flight engineer during Expedition 71/72 aboard the space station.
      Mission Overview
      After liftoff, Dragon will accelerate to approximately 17,500 mph to dock with the space station.
      Once in orbit, flight control teams from NASA’s Mission Control Center at the agency’s Johnson Space Center in Houston and the SpaceX mission control in Hawthorne, California, will monitor a series of automatic maneuvers that will guide Dragon to the forward-facing port of the station’s Harmony module. The spacecraft is designed to dock autonomously, but the crew can take control and pilot manually if necessary.
      After docking, Expedition 71 will welcome Hague and Gorbunov inside the station and conduct several days of handover activities with the departing astronauts of NASA’s SpaceX Crew-8 mission. After a handover period, NASA astronauts Matthew Dominick, Michael Barratt, Jeanette Epps, and Roscosmos cosmonaut Alexander Grebenkin of Crew-8 will undock from the space station and splash down off the coast of Florida.
      Crew-9 will conduct new scientific research to prepare for human exploration beyond low Earth orbit and benefit humanity on Earth. Experiments include the impact of flame behavior on Earth, studying cells and platelets during long-duration spaceflight, and a B vitamin that could reduce Spaceflight-Associated Neuro-ocular Syndrome. They’ll also work on experiments that benefit life on Earth, like studying the physics of supernova explosions and monitoring the effects of different moister treatments on plants grown aboard the station. These are just a few of over 200 scientific experiments and technology demonstrations taking place during their mission.
      While aboard the orbiting laboratory, Crew-9 will welcome two Dragon spacecraft, including NASA’s SpaceX’s 31st commercial resupply services mission and NASA’s SpaceX Crew-10, and two Roscosmos-led cargo deliveries on Progress 90 and 91.
      In February, Hague, Gorbunov, Wilmore, and Williams will climb aboard Dragon and autonomously undock, depart the space station, and re-enter Earth’s atmosphere. After splashdown off Florida’s coast, a SpaceX recovery vessel will pick up the spacecraft and crew, who then will be helicoptered back to shore.
      Commercial crew missions enable NASA to maximize use of the space station, where astronauts have lived and worked continuously for more than 23 years testing technologies, performing research, and developing the skills needed to operate future commercial destinations in low Earth orbit, and explore farther from Earth. Research conducted on the space station provides benefits for people on Earth and paves the way for future long-duration trips to the Moon and beyond through NASA’s Artemis missions.
      Get breaking news, images, and features from the space station on Instagram, Facebook, and X.
      Learn more about the space station, its research, and crew, at https://www.nasa.gov/station.
      Share
      Details
      Last Updated Sep 19, 2024 Related Terms
      Commercial Crew International Space Station (ISS) Explore More
      4 min read NASA Astronaut Tracy C. Dyson’s Scientific Mission aboard Space Station
      Article 1 day ago 3 min read Station Science Top News: September 13, 2024
      Article 3 days ago 4 min read NASA’s SpaceX Crew-9 to Conduct Space Station Research
      Article 7 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...