Jump to content

Recommended Posts

  • Publishers
Posted
A man stands inside the entrance of a tunnel, looking up at a small propeller plane. The tunnel, viewed from the side, is like a cylinder with sides curving inward. The photo is in black and white.
NASA

Elton W. Miller, chief of aerodynamics at what is now NASA’s Langley Research Center in Hampton, Virginia, stands in the entrance cone of the Propeller Research Tunnel in this Sept. 9, 1926, photo. In front of the entrance is the Sperry M-1 Messenger, the first full-scale airplane tested in the tunnel.

The Propeller Research Tunnel, or PRT as it came to be known, was only the National Advisory Committee for Aeronautics’ third wind tunnel and the largest one built. The PRT was in fact the largest tunnel built at that time anywhere in the world. Designed to accommodate a full-scale propeller, the throat of the PRT was 20 feet in diameter.

Learn more about the PRT from the report originally published in December 1928.

Image credit: NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      On Dec. 19, 2024, NASA released two amendments to the NASA Research Announcement Research Opportunities in Space and Earth Sciences (ROSES) 2024 (NNH24ZDA001N) to announce the E.9 Space Biology: Research Studies and E.12 Physical Sciences Research Studies program elements.  
      Space Biology Proposals 
      The research emphases of E.9 Space Biology: Research Studies fall under two broad categories: Precision Health and Space Crops  
      For Precision Health-focused studies, investigators may propose to use any non-primate animal model system and any appropriate cell/tissue culture/microphysiological system/organoid or microbial models that are supported by the chosen platform.   For Space Crop-focused studies, applicants may propose to use any plant, relevant microbe, and/or plant and microbe model system(s) that is (are) supported by the chosen platform.   The E.9 Space Biology: Research Studies opportunity includes five different Project Types: Research Investigations, Early Career Research Investigations, New NASA Investigators, OSDR Analytical Investigations, and Tissue Sharing Investigations. Specific requirements for each of these Project Types are described in the program element text. Questions concerning E.9 Space Biology: Research Studies may be directed to Lynn Harrison (for Precision Health) and Elison Blancaflor (for Space Crops) at nasa-spacebiology@mail.nasa.gov.  
      Physical Sciences Proposals 
      E.12 Physical Sciences: Research Studies solicits proposals to investigate physical phenomena in the absence of gravity and fundamental laws that describe the universe, and applied research that contributes to the basic understanding of processes underlying space exploration technologies.  
      The Physical Sciences program is divided into two key goals: Foundations and Quantum Leaps. Foundations focuses on understanding the behavior of fluids, combustion, soft matter, and materials in the spaceflight environment. Quantum Leaps aims to probe the very nature of the universe using exquisitely precise space-based quantum sensors to test the Einstein equivalence principle, dark sector physics, and the nature of fundamental physical constants.  
      The E.12 Physical Sciences: Research Studies opportunity will include four different Project Types: Research Investigations, New NASA Investigators, Physical Sciences Informatics, and Fundamental Physics Investigations. Specific requirements for each of these Project Types are described in detail in the program element text. Questions concerning E.12 Physical Sciences Research Studies may be directed to Brad Carpenter (regarding Foundations and PSI) or Mike Robinson (regarding Quantum Leaps) by writing to BPS-PhysicalSciences@nasaprs.com.  
      Town Hall 
      A pre-proposer’s townhall for applicants interested in submitting a proposal to these program elements will be held virtually on Jan. 22, 2025, at 3 p.m. Eastern Time. Meeting information will be posted on the NSPIRES page for each of the program elements under “Other Documents.” 
      Proposals to these program elements shall be submitted via a two-step process  
      Step-1 proposals must be submitted by Feb. 4, 2025   Step-2 proposals are due on May 6, 2025  Related Resources: 
      PSI Database is Live with New Features to Improve User Experience  Space Biology  Physical Sciences  View the full article
    • By NASA
      6 min read
      NASA Research To Be Featured at American Astronomical Society Meeting
      In this mosaic image stretching 340 light-years across, Webb’s Near-Infrared Camera (NIRCam) displays the Tarantula Nebula star-forming region in a new light, including tens of thousands of never-before-seen young stars that were previously shrouded in cosmic dust. The most active region appears to sparkle with massive young stars, appearing pale blue. NASA, ESA, CSA, STScI, Webb ERO Production Team From new perspectives on the early universe to illuminating the extreme environment near a black hole, discoveries from NASA missions will be highlighted at the 245th meeting of the American Astronomical Society (AAS). The meeting will take place Jan. 12-16 at the Gaylord National Resort & Convention Center in National Harbor, Maryland.
      Press conferences highlighting results enabled by NASA missions will stream live on the AAS Press Office YouTube channel. Additional agency highlights for registered attendees include:
      NASA Town Hall: Monday, Jan. 13, 12:45 p.m. EST Nancy Grace Roman Space Telescope Town Hall: Tuesday, Jan. 14, 6:30 p.m. EST James Webb Space Telescope Town Hall: Wednesday, Jan. 15, 6:30 p.m. EST Throughout the week, experts at the NASA Exhibit Booth will deliver science talks about missions including NASA’s James Webb Space Telescope (also called “Webb” or “JWST”), Hubble Space Telescope, Chandra X-ray Observatory, TESS (Transiting Exoplanet Survey Satellite), and NICER (Neutron star Interior Composition Explorer), an X-ray telescope on the International Space Station that will be repaired in a spacewalk Jan. 16. Talks will also highlight future missions such as Pandora, Roman, LISA (Laser Interferometer Space Antenna), the Habitable Worlds Observatory, and SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer), which is targeted to launch in late February; as well as mission concepts for NASA’s new Probe Explorers mission class in astrophysics, open science, heliophysics, and NASA Science Activation.
      Members of the media can request interviews with NASA experts on any of these topics by contacting Alise Fisher at alise.m.fisher@nasa.gov.
      Schedule of Highlights (EST)
      Monday, Jan. 13
      10 a.m.: Special Session – “SPHEREx: The Upcoming All-Sky Infrared Spectroscopic Survey”
      Chesapeake 4-5
      10 a.m.: Special Session – “Early Science Results from XRISM [X-Ray Imaging and Spectroscopy Mission]”
      National Harbor 10
      10:15 a.m.: AAS News Conference – “A Feast of Feasting Black Holes”
      Maryland Ballroom 5/6
      News based on data from NASA’s Neil Gehrels Swift Observatory, NICER, NuSTAR (Nuclear Spectroscopic Telescope Array), and Hubble, as well as XMM-Newton, an ESA (European Space Agency) mission with NASA contributions, will be featured:
      “Witnessing the Birth of a New Plasma Jet from a Supermassive Black Hole” “Rapidly Evolving X-Ray Oscillations in the Active Galaxy 1ES 1927+654” “Uncovering the Dining Habits of Supermassive Black Holes in Our Cosmic Backyard with NuLANDS” “The Discovery of a Newborn Quasar Jet Triggered by a Cosmic Dance” 12:45 p.m.: NASA Town Hall
      Mark Clampin, acting deputy associate administrator, Science Mission Directorate at NASA Headquarters
      Potomac Ballroom AB
      2:15 p.m.: AAS News Conference – “Supernovae and Massive Stars”
      Maryland Ballroom 5/6
      News from NASA’s Webb and Hubble space telescopes will be highlighted:
      “JWST Discovery of a Distant Supernova Linked to a Massive Progenitor in the Early Universe” “Core-Collapse Supernovae as Key Dust Producers: New Insights from JWST” “JWST Tracks the Expanding Dusty Fingerprints of a Massive Binary” “Stellar Pyrotechnics on Display in Super Star Cluster” “A Blue Lurker Emerges from a Triple-System Merger” Tuesday, Jan. 14
      10:15 a.m.: AAS News Conference – “Black Holes & New Outcomes from the Sloan Digital Sky Survey”
      Maryland Ballroom 5/6
      News based on data from NASA’s NuSTAR, Chandra, and Webb missions will be highlighted:
      “A Variable X-Ray Monster at the Epoch of Reionization” “JWST’s Little Red Dots and the Rise of Obscured Active Galactic Nuclei in the Early Universe” “Revealing the Mid-Infrared Properties of the Milky Way’s Supermassive Black Hole” 2 p.m.: Special Session – “Open Science: NASA Astrophysics in the Roman Era”
      Chesapeake 4-5
      2:15 p.m.: AAS News Conference – “New Information from Milky Way Highlights”
      Maryland Ballroom 5/6
      News from NASA’s Webb and Chandra missions will be highlighted:
      “Infrared Echoes of Cassiopeia A Reveal the Dynamic Interstellar Medium” “A Path-Breaking Observation of the Cold Neutral Medium of the Milky Way Through Thermal Light Echoes” “X-Ray Echoes from Sgr A* Provide Insight on the 3D Structure of Molecular Clouds in the Galactic Center” 3:40 p.m.: Plenary – “A Detector Backstory: How Silicon Detectors Came to Enable Space Missions”
      Shouleh Nikzad, NASA’s Jet Propulsion Laboratory
      Potomac Ballroom AB
      6:30 p.m.: Nancy Grace Roman Space Telescope Town Hall
      National Harbor 11
      Wednesday, Jan. 15
      8 a.m.: Plenary – “HEAD Bruno Rossi Prize Lecture: The Imaging X-ray Polarimetry Explorer (IXPE)”
      Martin Weisskopf, NASA’s Marshall Space Flight Center (emeritus), and Paolo Soffitta, INAF-IAPS (National Institute for Astrophysics-Institute of Space Astrophysics and Planetology)
      Potomac Ballroom AB
      10 a.m.: Special Session – Habitable Worlds Observatory
      Potomac Ballroom C
      10:15 a.m.: AAS News Conference – “Discovering the Universe Beyond Our Galaxy”
      Maryland Ballroom 5/6
      News from NASA’s Hubble and Webb will be highlighted:
      “The Hubble Tension in Our Own Backyard” “JWST Reveals the Early Universe in Our Backyard” “Growing in the Wind: Watching a Galaxy Seed Its Environment” 11:40 a.m.: Plenary – “Are We Alone? The Search for Life on Habitable Worlds”
      Giada Arney, NASA’s Goddard Space Flight Center
      Potomac Ballroom AB
      2:15 p.m.: AAS News Conference – “New Findings About Stars”
      Maryland Ballroom 5/6
      News based on data from NASA’s Webb and Solar Dynamics Observatory will be highlighted:
      “A Super Star Cluster Is Born: JWST Reveals Dust and Ice in a Stellar Nursery” “The Discovery of Ancient Relics in a Distant Evolved Galaxy” “Exploring the Sun’s Active Regions in the Moments Before Flares” 6:30 p.m.: James Webb Space Telescope Town Hall
      Potomac Ballroom C
      Thursday, Jan. 16
      10:15 a.m.: AAS News Conference – “Exoplanets: From Formation to Disintegration”
      Maryland Ballroom 5/6
      News from NASA’s Pandora, Chandra, TESS, and Webb missions, as well as XMM-Newton, will be highlighted:
      “A New NASA Mission to Characterize Exoplanets and Their Host Stars” “X-Rays in the Prime of Life: Irradiating Vulnerable Planets” “Bright Star, Fading World: Dusty Debris of a Dying Planet” “JWST Exposes Hot Rock Entrails from a Planet’s Demise” 2:15 p.m.: AAS News Conference – “Galactic Histories and Policy Futures”
      Maryland Ballroom 5/6
      News from NASA’s Webb and Hubble will be highlighted:
      “The Boundary of Galaxy Formation: Constraints from the Ancient Star Formation of the Isolated, Extremely Low-Mass Galaxy Leo P” “Resolving 90 Million Stars in the Southern Half of Andromeda” For more information on the meeting, including press registration and the complete meeting schedule, visit:
      https://aas.org/meetings/aas245
      Media Contacts
      Alise Fisher / Liz Landau
      Headquarters, Washington
      202-358-2546 / 202-358-0845
      alise.m.fisher@nasa.gov / elizabeth.r.landau@nasa.gov
      Share








      Details
      Last Updated Jan 10, 2025 Related Terms
      Astrophysics Astrophysics Division Chandra X-Ray Observatory Hubble Space Telescope IXPE (Imaging X-ray Polarimetry Explorer) James Webb Space Telescope (JWST) Nancy Grace Roman Space Telescope TESS (Transiting Exoplanet Survey Satellite) The Universe Explore More
      2 min read Hubble Rings In the New Year


      Article


      11 hours ago
      4 min read Astronaut Set to Patch NASA’s X-ray Telescope Aboard Space Station


      Article


      2 days ago
      3 min read Astronomy Activation Ambassadors: A New Era


      Article


      1 week ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      1 Min Read Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR)
      The SBIR/STTR programs provide an opportunity for small, high technology companies and research institutions (RI) to participate in Government sponsored research and development (R&D) efforts in key technology areas. NASA SBIR Phase I contracts have a period of performance for 6 months with a maximum funding of $125,000, and Phase II contracts have a period of performance up to 24 months with a maximum funding of $750,000. The STTR Phase I contracts last for 13 months with a maximum funding of $125,000, and Phase II contracts last for 24 months with the maximum contract value of $750,000. 

      SBIR/STTR Status Search
      SBIR.NASA.GOV Home Page
      SBIR/STTR Extension Request Form
      SBIR/STTR Electronic Handbook 
      SBA – SBIR/STTR Policy Directive
      View the full article
    • By NASA
      5 Min Read NASA’s Ames Research Center Celebrates 85 Years of Innovation
      The NACA Ames laboratory in 1944 Credits: NASA Ames Research Center in California’s Silicon Valley pre-dates a lot of things. The center existed before NASA – the very space and aeronautics agency it’s a critical part of today. And of all the marvelous advancements in science and technology that have fundamentally changed our lives over the last 85 years since its founding, one aspect has remained steadfast; an enduring commitment to what’s known by some on-center simply as, “an atmosphere of freedom.” 
      Years before breaking ground at the site that would one day become home to the world’s preeminent wind tunnels, supercomputers, simulators, and brightest minds solving some of the world’s toughest challenges, Joseph Sweetman Ames, the center’s namesake, described a sentiment that would guide decades of innovation and research: 
      My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere
      Joseph sweetman ames
      Founding member of the N.A.C.A.
      “My hope is that you have learned or are learning a love of freedom of thought and are convinced that life is worthwhile only in such an atmosphere,” he said in an address to the graduates of Johns Hopkins University in June 1935.
      That spirit and the people it attracted and retained are a crucial part of how Ames, along with other N.A.C.A. research centers, ultimately made technological breakthroughs that enabled humanity’s first steps on the Moon, the safe return of spacecraft through Earth’s atmosphere, and many other discoveries that benefit our day-to-day lives.
      Russell Robinson momentarily looks to the camera while supervising the first excavation at what would become Ames Research Center.NACA “In the context of my work, an atmosphere of freedom means the freedom to pursue high-risk, high-reward, innovative ideas that may take time to fully develop and — most importantly — the opportunity to put them into practice for the benefit of all,” said Edward Balaban, a researcher at Ames specializing in artificial intelligence, robotics, and advanced mission concepts.
      Balaban’s career at Ames has involved a variety of projects at different stages of development – from early concept to flight-ready – including experimenting with different ways to create super-sized space telescopes in space and using artificial intelligence to help guide the path a rover might take to maximize off-world science results. Like many Ames researchers over the years, Balaban shared that his experience has involved deep collaborations across science and engineering disciplines with colleagues all over the center, as well as commercial and academic partners in Silicon Valley where Ames is nestled and beyond. This is a tradition that runs deep at Ames and has helped lead to entirely new fields of study and seeded many companies and spinoffs.
      Before NASA, Before Silicon Valley: The 1939 Founding of Ames Aeronautical Laboratory “In the fields of aeronautics and space exploration the cost of entry can be quite high. For commercial enterprises and universities pursuing longer term ideas and putting them into practice often means partnering up with an organization such as NASA that has the scale and multi-disciplinary expertise to mature these ideas for real-world applications,” added Balaban.
      “Certainly, the topics of inquiry, the academic freedom, and the benefit to the public good are what has kept me at Ames,” reflected Ross Beyer, a planetary scientist with the SETI Institute at Ames. “There’s not a lot of commercial incentive to study other planets, for example, but maybe there will be soon. In the meantime, only with government funding and agencies like NASA can we develop missions to explore the unknown in order to make important fundamental science discoveries and broadly share them.”
      For Beyer, his boundary-breaking moment came when he searched – and found – software engineers at Ames capable and passionate about open-source software to generate accurate, high-resolution, texture-mapped, 3D terrain models from stereo image pairs. He and other teams of NASA scientists have since applied that software to study and better understand everything from changes in snow and ice characteristics on Earth, as well as features like craters, mountains, and caves on Mars or the Moon. This capability is part of the Artemis campaign, through which NASA will establish a long-term presence at the Moon for scientific exploration with commercial and international partners. The mission is to learn how to live and work away from home, promote the peaceful use of space, and prepare for future human exploration of Mars. 
      “As NASA and private companies send missions to the Moon, they need to plan landing sites and understand the local environment, and our software is freely available for anyone to use,” Beyer said. “Years ago, our management could easily have said ‘No, let’s keep this software to ourselves; it gives us a competitive advantage.’ They didn’t, and I believe that NASA writ large allows you to work on things and share those things and not hold them back.” 
      When looking forward to what the next 85 years might bring, researchers shared a belief that advancements in technology and opportunities to innovate are as expansive as space itself, but like all living things, they need a healthy atmosphere to thrive. Balaban offered, “This freedom to innovate is precious and cannot be taken for granted. It can easily fall victim if left unprotected. It is absolutely critical to retain it going forward, to ensure our nation’s continuing vitality and the strength of the other freedoms we enjoy.”
      Ames Aeronautical Laboratory.NACAView the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA/Quincy Eggert NASA’s Armstrong Flight Research Center in Edwards, California, is preparing today for tomorrow’s mission. Supersonic flight, next generation aircraft, advanced air mobility, climate changes, human exploration of space, and the next innovation are just some of the topics our researchers, engineers, and mission support teams focused on in 2024.
      NASA Armstrong began 2024 with the public debut of the X-59 quiet supersonic research aircraft. Through the unique design of the X-59, NASA aims to reduce the sonic boom to make it much quieter, potentially opening the future to commercial supersonic flight over land. Throughout the first part of the year, NASA and international researchers studied air quality across Asia as part of a global effort to better understand the air we breathe. Later in the year, for the first time, a NASA-funded researcher conducted an experiment aboard a commercial suborbital rocket, studying how changes in gravity during spaceflight affect plant biology.
      Here’s a look at more NASA Armstrong accomplishments throughout 2024:
      Our simulation team began work on NASA’s X-66 simulator, which will use an MD-90 cockpit and allow pilots and engineers to run real-life scenarios in a safe environment. NASA Armstrong engineers completed and tested a model of a truss-braced wing design, laying the groundwork for improved commercial aircraft aerodynamics. NASA’s Advanced Air Mobility mission and supporting projects worked with industry partners who are building innovative new aircraft like electric air taxis. We explored how these new designs may help passengers and cargo move between and inside cities efficiently. The team began testing with a custom virtual reality flight simulator to explore the air taxi ride experience. This will help designers create new aircraft with passenger comfort in mind. Researchers also tested a new technology that will help self-flying aircraft avoid hazards. A NASA-developed computer software tool called OVERFLOW helped several air taxi companies predict aircraft noise and aerodynamic performance. This tool allows manufacturers to see how new design elements would perform, saving the aerospace industry time and money. Our engineers designed a camera pod with sensors at NASA Armstrong to help advance computer vision for autonomous aviation and flew this pod at NASA’s Kennedy Space Center in Florida. NASA’s Quesst mission marked a major milestone with the start of tests on the engine that will power the quiet supersonic X-59 experimental aircraft. In February and March, NASA joined international researchers in Asia to investigate pollution sources. The now retired DC-8 and NASA Langley Gulfstream III aircraft collected air measurements over the Philippines, South Korea, Malaysia, Thailand, and Taiwan. Combined with ground and satellite observations, these measurements continue to enrich global discussions about pollution origins and solutions. The Gulfstream IV joined NASA Armstrong’s fleet of airborne science platforms. Our teams modified the aircraft to accommodate a next-generation science instrument that will collect terrain information of the Earth in a more capable, versatile, and maintainable way. The ER-2 and the King Air supported the development of spaceborne instruments by testing them in suborbital settings. On the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment mission (PACE-PAX), the ER-2 validated data collected by the PACE satellite about the ocean, atmosphere, and surfaces. Operating over several countries, researchers onboard NASA’s C-20A collected data and images of Earth’s surface to understand global ecosystems, natural hazards, and land surface changes. Following Hurricane Milton, the C-20A flew over affected areas to collect data that could help inform disaster response in the future. We also tested nighttime precision landing technologies that safely deliver spacecraft to hazardous locations with limited visibility. With the goal to improve firefighter safety, NASA, the U.S. Forest Service, and industry tested a cell tower in the sky. The system successfully provided persistent cell coverage, enabling real-time communication between firefighters and command posts. Using a 1960s concept wingless, powered aircraft design, we built and tested an atmospheric probe to better and more economically explore giant planets. NASA Armstrong hosted its first Ideas to Flight workshop, where subject matter experts shared how to accelerate research ideas and technology development through flight. These are just some of NASA Armstrong’s many innovative research efforts that support NASA’s mission to explore the secrets of the universe for the benefit of all.
      Share
      Details
      Last Updated Dec 20, 2024 EditorDede DiniusContactSarah Mannsarah.mann@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Mobility Aeronautics C-20A DC-8 Earth Science ER-2 Flight Opportunities Program Quesst (X-59) Sustainable Flight Demonstrator Explore More
      2 min read NASA, Notre Dame Connect Students to Inspire STEM Careers
      Article 5 hours ago 2 min read NASA Flight Rerouting Tool Curbs Delays, Emissions
      Article 5 hours ago 5 min read NASA Technologies Aim to Solve Housekeeping’s Biggest Issue – Dust
      During the flight test with Blue Origin, seven technologies developed by NASA’s Game Changing Development…
      Article 7 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong Programs & Projects
      Armstrong Technologies
      Armstrong Capabilities & Facilities
      View the full article
  • Check out these Videos

×
×
  • Create New...