Members Can Post Anonymously On This Site
How It Started, How It’s Going: Johnson Space Center Edition
-
Similar Topics
-
By NASA
On Dec. 19, 2024, NASA released two amendments to the NASA Research Announcement Research Opportunities in Space and Earth Sciences (ROSES) 2024 (NNH24ZDA001N) to announce the E.9 Space Biology: Research Studies and E.12 Physical Sciences Research Studies program elements.
Space Biology Proposals
The research emphases of E.9 Space Biology: Research Studies fall under two broad categories: Precision Health and Space Crops
For Precision Health-focused studies, investigators may propose to use any non-primate animal model system and any appropriate cell/tissue culture/microphysiological system/organoid or microbial models that are supported by the chosen platform. For Space Crop-focused studies, applicants may propose to use any plant, relevant microbe, and/or plant and microbe model system(s) that is (are) supported by the chosen platform. The E.9 Space Biology: Research Studies opportunity includes five different Project Types: Research Investigations, Early Career Research Investigations, New NASA Investigators, OSDR Analytical Investigations, and Tissue Sharing Investigations. Specific requirements for each of these Project Types are described in the program element text. Questions concerning E.9 Space Biology: Research Studies may be directed to Lynn Harrison (for Precision Health) and Elison Blancaflor (for Space Crops) at nasa-spacebiology@mail.nasa.gov.
Physical Sciences Proposals
E.12 Physical Sciences: Research Studies solicits proposals to investigate physical phenomena in the absence of gravity and fundamental laws that describe the universe, and applied research that contributes to the basic understanding of processes underlying space exploration technologies.
The Physical Sciences program is divided into two key goals: Foundations and Quantum Leaps. Foundations focuses on understanding the behavior of fluids, combustion, soft matter, and materials in the spaceflight environment. Quantum Leaps aims to probe the very nature of the universe using exquisitely precise space-based quantum sensors to test the Einstein equivalence principle, dark sector physics, and the nature of fundamental physical constants.
The E.12 Physical Sciences: Research Studies opportunity will include four different Project Types: Research Investigations, New NASA Investigators, Physical Sciences Informatics, and Fundamental Physics Investigations. Specific requirements for each of these Project Types are described in detail in the program element text. Questions concerning E.12 Physical Sciences Research Studies may be directed to Brad Carpenter (regarding Foundations and PSI) or Mike Robinson (regarding Quantum Leaps) by writing to BPS-PhysicalSciences@nasaprs.com.
Town Hall
A pre-proposer’s townhall for applicants interested in submitting a proposal to these program elements will be held virtually on Jan. 22, 2025, at 3 p.m. Eastern Time. Meeting information will be posted on the NSPIRES page for each of the program elements under “Other Documents.”
Proposals to these program elements shall be submitted via a two-step process
Step-1 proposals must be submitted by Feb. 4, 2025 Step-2 proposals are due on May 6, 2025 Related Resources:
PSI Database is Live with New Features to Improve User Experience Space Biology Physical Sciences View the full article
-
By NASA
NASA’s Roman Coronagraph Instrument will greatly advance our ability to directly image exoplanets, or planets and disks around other stars.
The Roman Coronagraph Instrument, a technology demonstration designed and built by NASA’s Jet Propulsion Laboratory, will fly aboard NASA’s next flagship astrophysics observatory, the Nancy Grace Roman Space Telescope.
Coronagraphs work by blocking light from a bright object, like a star, so that the observer can more easily see a nearby faint object, like a planet. The Roman Coronagraph Instrument will use a unique suite of technologies including deformable mirrors, masks, high-precision cameras, and active wavefront sensing and control to detect planets 100 million times fainter than their stars, or 100 to 1,000 times better than existing space-based coronagraphs. The Roman Coronagraph will be capable of directly imaging reflected starlight from a planet akin to Jupiter in size, temperature, and distance from its parent star.
Artwork Key
1. The Nancy Grace Roman Space Telescope
2. Exoplanet Count : Total number of exoplanets discovered at the time of poster release. This number is increasing all of the time.
3. Nancy Grace Roman’s birth year : Nancy Grace Roman was born on May 16, 1925.
4. Color Filters : Filters block different wavelengths, or colors, of light.
5. Exoplanet Camera
6. Deformable Mirrors : Adjusts the wavefront of incoming light by changing the shape of a mirror with thousands of tiny pistons.
7. Focal Plane Mask : This is a mask that helps to block starlight and reveal exoplanets.
8. Lyot Stop Mask : This is a mask that helps to block starlight and reveal exoplanets.
9. Fast Steering Mirror : This element corrects for telescope pointing jitter.
10. Additional Coronagraph Masks : These masks block most of the glare from stars to reveal faint orbiting planets and dusty debris disks.
Downloads
Download the Digital Version of Poster
Jan 14, 2025
PDF ()
Download Press Version (highest quality for print)
Jan 14, 2025
PDF ()
Keep Exploring Discover More about Roman
Latest Roman Stories
Roman Observatory
About Roman
Coronagraph
View the full article
-
By NASA
The Wide-Field Instrument (WFI), the primary instrument aboard NASA’s Nancy Grace Roman Space Telescope, is a 300-megapixel visible and infrared camera that will allow scientists to perform revolutionary astrophysics surveys.
This specialized camera detects faint light across the cosmos and will be used to study a wide range of astrophysics topics including the expansion and acceleration of our universe, planets orbiting other stars in the Milky Way, and far off galaxies.
WFI will conduct surveys to detect and measure billions of stars and galaxies along with rare phenomena that would otherwise be difficult or impossible to find. To survey large areas of sky, WFI uses a suite of 18 detectors that convert incoming light into electrical signals that are translated into images.
While Roman will operate alongside other space telescopes like Hubble, WFI’s capabilities are pushing the boundaries of what is possible. Roman’s WFI has a similar sensitivity and resolution to Hubble, but WFI will capture images that cover about 100 times more sky in a single observation and will survey the sky up to 1,000 times faster.
Artwork Key
1. The Nancy Grace Roman Space Telescope
2. Light Path : The light entering the telescope will take this path, bouncing off of multiple focusing mirrors and passing through filters or dispersers in the element wheel to reach the detectors.
3. Important Years : 1990: NASA’s Hubble Space Telescope launched. 1960: Nancy Grace Roman became NASA’s Chief Astronomer.
4. Field of View : Roman’s field of view is about 100 times larger than that of the infrared camera onboard the Hubble Space Telescope. WFI’s large field of view is achieved using an array of 18 detectors which are represented by the squares in this graphic
5. Detectors : This dial has one tick mark for each of WFI’s 18 detectors.
6. Modes : WFI has imaging and spectroscopy modes.
7. Wavelengths : WFI will observe in both visible and infrared light and can select which wavelengths reach the detectors using filters in the element wheel.
8. “Dark Energy” Drink + “Dark Matter” Candy : Roman will enable new research into the mysteries of dark energy and dark matter.
9. Science Goals : The names of these games capture WFI’s role as a survey instrument and the types of surveys it will perform.
10. Joystick : This joystick features design elements found on the WFI’s element wheel assembly, a large, rotating metal disk with optics that filter or disperse light.
Downloads
Download the Digital Version of Poster
Jan 14, 2025
PDF ()
Download Press Version (highest quality for print)
Jan 14, 2025
PDF ()
Keep Exploring Discover More about Roman
Latest Roman Stories
Roman Observatory
About Roman
Wide Field Instrument
View the full article
-
By Space Force
SECAF Kendall offers his vision for the security challenges the Air Force and Space Force could face in 2050 and what is needed to properly respond.
View the full article
-
By NASA
NASA Deputy Administrator Pam Melroy gives keynote remarks during the 37th Space Symposium, Tuesday, April 5, 2022, in Colorado Springs, Colorado. Photo Credit: (NASA/Bill Ingalls) The Rotary National Award for Space Achievement Foundation has selected NASA Deputy Administrator Pam Melroy, a retired United States Air Force colonel and former NASA astronaut, to receive the 2025 National Space Trophy on April 25 in Houston.
“This honor is not just a reflection of my journey but a testament to the incredible teams and visionaries I’ve been privileged to work alongside,” said Melroy. “Exploring space is the ultimate act of human aspiration, proving time and again that when we dream together, we achieve the impossible. Being selected for the National Space Trophy is a humbling reminder of how far we’ve come — and how much further we can go.”
Vanessa Wyche, director of NASA’s Johnson Space Center in Houston, who nominated Melroy alongside former NASA Johnson director Michael Coats, said, “Pam has brilliantly paved the way for future generations pursuing careers in STEM fields through her exemplary leadership, dedication to mission excellence, and integral contributions to the advancement of space exploration. I am thrilled and immensely proud that Pam is receiving this well-deserved recognition.”
Sworn in as NASA’s deputy administrator on June 21, 2021, Melroy assists NASA Administrator Bill Nelson on key agency decisions, defines the agency’s strategic vision, and represents NASA to key government and international partners.
Melroy first joined NASA as an astronaut in 1994 and holds the distinction of being only one of two women to command a space shuttle. She spent more than 38 days in space across three space shuttle missions, all contributing to the assembly of the International Space Station. She served as pilot for STS-92 in 2000 and STS-112 in 2002, and she commanded STS-120 in 2007.
After serving more than two decades in the U.S. Air Force and as a NASA astronaut, Melroy transitioned to leadership roles at Lockheed Martin, the Federal Aviation Administration, the Defense Advanced Research Projects Agency, and Nova Systems Pty, Australia. Additionally, she was as an advisor to the Australian Space Agency and a member of the National Space Council’s Users Advisory Group.
The Rotary National Award for Space Achievement Foundation invites members of the public and the aerospace community to attend the Space Awards gala where Melroy will be recognized with the National Space Trophy. For more information on Melroy, visit:
https://www.nasa.gov/people/nasa-deputy-administrator-pam-melroy/
-end-
Amber Jacobson
Headquarters, Washington
202-358-1600
amber.c.jacobson@nasa.gov
Share
Details
Last Updated Jan 14, 2025 LocationNASA Headquarters Related Terms
Pamela A. Melroy Astronauts View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.