Members Can Post Anonymously On This Site
Roman Space Telescope Coronagraph Instrument Poster
-
Similar Topics
-
By NASA
The Wide-Field Instrument (WFI), the primary instrument aboard NASA’s Nancy Grace Roman Space Telescope, is a 300-megapixel visible and infrared camera that will allow scientists to perform revolutionary astrophysics surveys.
This specialized camera detects faint light across the cosmos and will be used to study a wide range of astrophysics topics including the expansion and acceleration of our universe, planets orbiting other stars in the Milky Way, and far off galaxies.
WFI will conduct surveys to detect and measure billions of stars and galaxies along with rare phenomena that would otherwise be difficult or impossible to find. To survey large areas of sky, WFI uses a suite of 18 detectors that convert incoming light into electrical signals that are translated into images.
While Roman will operate alongside other space telescopes like Hubble, WFI’s capabilities are pushing the boundaries of what is possible. Roman’s WFI has a similar sensitivity and resolution to Hubble, but WFI will capture images that cover about 100 times more sky in a single observation and will survey the sky up to 1,000 times faster.
Artwork Key
1. The Nancy Grace Roman Space Telescope
2. Light Path : The light entering the telescope will take this path, bouncing off of multiple focusing mirrors and passing through filters or dispersers in the element wheel to reach the detectors.
3. Important Years : 1990: NASA’s Hubble Space Telescope launched. 1960: Nancy Grace Roman became NASA’s Chief Astronomer.
4. Field of View : Roman’s field of view is about 100 times larger than that of the infrared camera onboard the Hubble Space Telescope. WFI’s large field of view is achieved using an array of 18 detectors which are represented by the squares in this graphic
5. Detectors : This dial has one tick mark for each of WFI’s 18 detectors.
6. Modes : WFI has imaging and spectroscopy modes.
7. Wavelengths : WFI will observe in both visible and infrared light and can select which wavelengths reach the detectors using filters in the element wheel.
8. “Dark Energy” Drink + “Dark Matter” Candy : Roman will enable new research into the mysteries of dark energy and dark matter.
9. Science Goals : The names of these games capture WFI’s role as a survey instrument and the types of surveys it will perform.
10. Joystick : This joystick features design elements found on the WFI’s element wheel assembly, a large, rotating metal disk with optics that filter or disperse light.
Downloads
Download the Digital Version of Poster
Jan 14, 2025
PDF ()
Download Press Version (highest quality for print)
Jan 14, 2025
PDF ()
Keep Exploring Discover More about Roman
Latest Roman Stories
Roman Observatory
About Roman
Wide Field Instrument
View the full article
-
By Space Force
SECAF Kendall offers his vision for the security challenges the Air Force and Space Force could face in 2050 and what is needed to properly respond.
View the full article
-
By NASA
NASA Deputy Administrator Pam Melroy gives keynote remarks during the 37th Space Symposium, Tuesday, April 5, 2022, in Colorado Springs, Colorado. Photo Credit: (NASA/Bill Ingalls) The Rotary National Award for Space Achievement Foundation has selected NASA Deputy Administrator Pam Melroy, a retired United States Air Force colonel and former NASA astronaut, to receive the 2025 National Space Trophy on April 25 in Houston.
“This honor is not just a reflection of my journey but a testament to the incredible teams and visionaries I’ve been privileged to work alongside,” said Melroy. “Exploring space is the ultimate act of human aspiration, proving time and again that when we dream together, we achieve the impossible. Being selected for the National Space Trophy is a humbling reminder of how far we’ve come — and how much further we can go.”
Vanessa Wyche, director of NASA’s Johnson Space Center in Houston, who nominated Melroy alongside former NASA Johnson director Michael Coats, said, “Pam has brilliantly paved the way for future generations pursuing careers in STEM fields through her exemplary leadership, dedication to mission excellence, and integral contributions to the advancement of space exploration. I am thrilled and immensely proud that Pam is receiving this well-deserved recognition.”
Sworn in as NASA’s deputy administrator on June 21, 2021, Melroy assists NASA Administrator Bill Nelson on key agency decisions, defines the agency’s strategic vision, and represents NASA to key government and international partners.
Melroy first joined NASA as an astronaut in 1994 and holds the distinction of being only one of two women to command a space shuttle. She spent more than 38 days in space across three space shuttle missions, all contributing to the assembly of the International Space Station. She served as pilot for STS-92 in 2000 and STS-112 in 2002, and she commanded STS-120 in 2007.
After serving more than two decades in the U.S. Air Force and as a NASA astronaut, Melroy transitioned to leadership roles at Lockheed Martin, the Federal Aviation Administration, the Defense Advanced Research Projects Agency, and Nova Systems Pty, Australia. Additionally, she was as an advisor to the Australian Space Agency and a member of the National Space Council’s Users Advisory Group.
The Rotary National Award for Space Achievement Foundation invites members of the public and the aerospace community to attend the Space Awards gala where Melroy will be recognized with the National Space Trophy. For more information on Melroy, visit:
https://www.nasa.gov/people/nasa-deputy-administrator-pam-melroy/
-end-
Amber Jacobson
Headquarters, Washington
202-358-1600
amber.c.jacobson@nasa.gov
Share
Details
Last Updated Jan 14, 2025 LocationNASA Headquarters Related Terms
Pamela A. Melroy Astronauts View the full article
-
By NASA
Astronomers have released a set of more than a million simulated images showcasing the cosmos as NASA’s upcoming Nancy Grace Roman Space Telescope will see it. This preview will help scientists explore a myriad of Roman’s science goals.
“We used a supercomputer to create a synthetic universe and simulated billions of years of evolution, tracing every photon’s path all the way from each cosmic object to Roman’s detectors,” said Michael Troxel, an associate professor of physics at Duke University in Durham, North Carolina, who led the simulation campaign. “This is the largest, deepest, most realistic synthetic survey of a mock universe available today.”
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This video begins with a tiny one-square-degree portion of the full OpenUniverse simulation area (about 70 square degrees, equivalent to an area of sky covered by more than 300 full moons). It spirals in toward a particularly galaxy-dense region, zooming by a factor of 75. This simulation showcases the cosmos as NASA’s Nancy Grace Roman Space Telescope could see it, allowing scientists to preview the next generation of cosmic discovery now. Roman’s real future surveys will enable a deep dive into the universe with highly resolved imaging, as demonstrated in this video. NASA’s Goddard Space Flight Center and M. Troxel The project, called OpenUniverse, relied on the now-retired Theta supercomputer at the DOE’s (Department of Energy’s) Argonne National Laboratory in Illinois. The supercomputer accomplished a process that would take over 6,000 years on a typical computer in just nine days.
In addition to Roman, the 400-terabyte dataset will also preview observations from the Vera C. Rubin Observatory, which is jointly funded by the National Science Foundation and the U.S. Department of Energy, and approximate simulations from ESA’s (the European Space Agency’s) Euclid mission, which has NASA contributions. The Roman data is available now here, and the Rubin and Euclid data will soon follow.
The team used the most sophisticated modeling of the universe’s underlying physics available and fed in information from existing galaxy catalogs and the performance of the telescopes’ instruments. The resulting simulated images span 70 square degrees, equivalent to an area of sky covered by more than 300 full moons. In addition to covering a broad area, it also covers a large span of time — more than 12 billion years.
Each tiny dot in the image at left is a galaxy simulated by the OpenUniverse campaign. The one-square-degree image offers a small window into the full simulation area, which is about 70 square degrees (equivalent to an area of sky covered by more than 300 full moons), while the inset at right is a close-up of an area 75 times smaller (1/600th the size of the full area). This simulation showcases the cosmos as NASA’s Nancy Grace Roman Space Telescope could see it. Roman will expand on the largest space-based galaxy survey like it – the Hubble Space Telescope’s COSMOS survey – which imaged two square degrees of sky over the course of 42 days. In only 250 days, Roman will view more than a thousand times more of the sky with the same resolution. The project’s immense space-time coverage shows scientists how the telescopes will help them explore some of the biggest cosmic mysteries. They will be able to study how dark energy (the mysterious force thought to be accelerating the universe’s expansion) and dark matter (invisible matter, seen only through its gravitational influence on regular matter) shape the cosmos and affect its fate. Scientists will get closer to understanding dark matter by studying its gravitational effects on visible matter. And by studying the simulation’s 100 million synthetic galaxies, they will see how galaxies and galaxy clusters evolved over eons.
Repeated mock observations of a particular slice of the universe enabled the team to stitch together movies that unveil exploding stars crackling across the synthetic cosmos like fireworks. These starbursts allow scientists to map the expansion of the simulated universe.
This simulation showcases the dynamic universe as NASA’s Nancy Grace Roman Space Telescope could see it over the course of its five-year primary mission. The video sparkles with synthetic supernovae from observations of the OpenUniverse simulated universe taken every five days (similar to the expected cadence of Roman’s High-Latitude Time-Domain Survey, which OpenUniverse simulates in its entirety). On top of the static sky of stars in the Milky Way and other galaxies, more than a million exploding stars flare into visibility and then slowly fade away. To highlight the dynamic physics happening and for visibility at this scale, the true brightness of each transient event has been magnified by a factor of 10,000 and no background light has been added to the simulated images. The video begins with Roman’s full field of view, which represents a single pointing of Roman’s camera, and then zooms into one square.NASA’s Goddard Space Flight Center and M. Troxel Scientists are now using OpenUniverse data as a testbed for creating an alert system to notify astronomers when Roman sees such phenomena. The system will flag these events and track the light they generate so astronomers can study them.
That’s critical because Roman will send back far too much data for scientists to comb through themselves. Teams are developing machine-learning algorithms to determine how best to filter through all the data to find and differentiate cosmic phenomena, like various types of exploding stars.
“Most of the difficulty is in figuring out whether what you saw was a special type of supernova that we can use to map how the universe is expanding, or something that is almost identical but useless for that goal,” said Alina Kiessling, a research scientist at NASA’s Jet Propulsion Laboratory (JPL) in Southern California and the principal investigator of OpenUniverse.
While Euclid is already actively scanning the cosmos, Rubin is set to begin operations late this year and Roman will launch by May 2027. Scientists can use the synthetic images to plan the upcoming telescopes’ observations and prepare to handle their data. This prep time is crucial because of the flood of data these telescopes will provide.
In terms of data volume, “Roman is going to blow away everything that’s been done from space in infrared and optical wavelengths before,” Troxel said. “For one of Roman’s surveys, it will take less than a year to do observations that would take the Hubble or James Webb space telescopes around a thousand years. The sheer number of objects Roman will sharply image will be transformative.”
This synthetic OpenUniverse animation shows the type of science that astronomers will be able to do with future Roman deep-field observations. The gravity of intervening galaxy clusters and dark matter can lens the light from farther objects, warping their appearance as shown in the animation. By studying the distorted light, astronomers can study elusive dark matter, which can only be measured indirectly through its gravitational effects on visible matter. As a bonus, this lensing also makes it easier to see the most distant galaxies whose light the dark matter magnifies. Caltech-IPAC/R. Hurt “We can expect an incredible array of exciting, potentially Nobel Prize-winning science to stem from Roman’s observations,” Kiessling said. “The mission will do things like unveil how the universe expanded over time, make 3D maps of galaxies and galaxy clusters, reveal new details about star formation and evolution — all things we simulated. So now we get to practice on the synthetic data so we can get right to the science when real observations begin.”
Astronomers will continue using the simulations after Roman launches for a cosmic game of spot the differences. Comparing real observations with synthetic ones will help scientists see how accurately their simulation predicts reality. Any discrepancies could hint at different physics at play in the universe than expected.
“If we see something that doesn’t quite agree with the standard model of cosmology, it will be extremely important to confirm that we’re really seeing new physics and not just misunderstanding something in the data,” said Katrin Heitmann, a cosmologist and deputy director of Argonne’s High Energy Physics division who managed the project’s supercomputer time. “Simulations are super useful for figuring that out.”
OpenUniverse, along with other simulation tools being developed by Roman’s Science Operations and Science Support centers, will prepare astronomers for the large datasets expected from Roman. The project brings together dozens of experts from NASA’s JPL, DOE’s Argonne, IPAC, and several U.S. universities to coordinate with the Roman Project Infrastructure Teams, SLAC, and the Rubin LSST DESC (Legacy Survey of Space and Time Dark Energy Science Collaboration). The Theta supercomputer was operated by the Argonne Leadership Computing Facility, a DOE Office of Science user facility.
The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
Download high-resolution video and images from NASA’s Scientific Visualization Studio
By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940
Share
Details
Last Updated Jan 14, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Astrophysics Dark Energy Dark Matter Galaxies Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Galaxy clusters Goddard Space Flight Center High-Tech Computing Science & Research Stars Supernovae Technology The Universe Explore More
6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
Article 6 months ago 6 min read Why NASA’s Roman Mission Will Study Milky Way’s Flickering Lights
Article 1 year ago 7 min read Simulated Image Shows How NASA’s Roman Could Expand on Hubble’s Deepest View
Article 3 years ago View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
LMS instrument aboard the Blue Ghost Lander heading to Mare Crisium in mid-January
As part of its Artemis campaign, NASA is developing a series of increasingly complex lunar deliveries and missions to ultimately build a sustained human presence at the Moon for decades to come. Through the agency’s CLPS (Commercial Lunar Payload Services) initiative, commercial provider Firefly’s Blue Ghost lander will head to the Moon’s Mare Crisium for a 14-day lunar lander mission, carrying NASA science and technology that will help understand the lunar subsurface in a previously unexplored location.
From within the Mare Crisium impact basin, the SwRI-led Lunar Magnetotelluric Sounder (LMS) may provide the first geophysical measurements representative of the bulk of the Moon. Most of the Apollo missions landed in the region of linked maria to the west (left image), whose crust was later shown to be compositionally distinct (right image) as exemplified by the concentration of the element thorium. Mare Crisium provides a smooth landing site on the near side of the Moon outside of this anomalous region. NASA Developed by the Southwest Research Institute (SwRI), NASA’s Lunar Magnetotelluric Sounder (LMS) will probe the interior of the Moon to depths of up to 700 miles, two-thirds of the way to the lunar center. The measurements will shed light on the differentiation and thermal history of our Moon, a cornerstone to understanding the evolution of solid worlds.
Magnetotellurics uses natural variations in surface electric and magnetic fields to calculate how easily electricity flows in subsurface materials, which can reveal their composition and structure.
“For more than 50 years, scientists have used magnetotellurics on Earth for a wide variety of purposes, including to find oil, water, and geothermal and mineral resources, as well as to understand geologic processes such as the growth of continents,” said SwRI’s Dr. Robert Grimm, principal investigator of LMS. “The LMS instrument will be the first extraterrestrial application of magnetotellurics.”
Mare Crisium is an ancient, 350-mile-diameter impact basin that subsequently filled with lava, creating a dark spot visible on the Moon from Earth. Early astronomers who dubbed dark spots on the moon “maria,” Latin for seas, mistook them for actual seas.
Mare Crisium stands apart from the large, connected areas of dark lava to the west where most of the Apollo missions landed. These vast, linked lava plains are now thought to be compositionally and structurally different from the rest of the Moon. From this separate vantage point, LMS may provide the first geophysical measurements representative of most of the Moon.
The Lunar Magnetotelluric Sounder (LMS) will probe the interior of the Moon to depths of up to 700 miles or two-thirds of the lunar radius. The measurements will shed light on the differentiation and thermal history of our Moon, a cornerstone to understanding the evolution of solid worlds.
NASA’s Goddard Space Flight Center The LMS instrument ejects cables with electrodes at 90-degree angles to each other and distances up to 60 feet. The instrument measures voltages across opposite pairs of electrodes, much like the probes of a conventional voltmeter. The magnetometer is deployed via an extendable mast to reduce interference from the lander. The magnetotelluric method reveals a vertical profile of the electrical conductivity, providing insight into the temperature and composition of the penetrated materials in the lunar interior.
“The five individual subsystems of LMS, together with connecting cables, weigh about 14 pounds and consume about 11 Watts of power,” Grimm said. “While stowed, each electrode is surrounded by a ‘yarn ball’ of cable, so the assembly is roughly spherical and the size of a softball.”
The LMS payload was funded and will be delivered to the lunar surface through NASA’s CLPS initiative. Southwest Research Institute based in San Antonio built the central electronics and leads the science investigation. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provided the LMS magnetometer to measure the magnetic fields, and Heliospace Corp. provided the electrodes used to measure the electrical fields.
Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
Media Contact: Rani Gran
NASA’s Goddard Space Flight Center, Greenbelt, Maryland
Share
Details
Last Updated Jan 10, 2025 EditorRob GarnerContactRani GranLocationGoddard Space Flight Center Related Terms
Commercial Lunar Payload Services (CLPS) Earth's Moon Goddard Space Flight Center View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.