Jump to content

Ten NASA Science, Tech Instruments Flying to Moon on Firefly Lander


Recommended Posts

  • Publishers
Posted
Firefly Aerospace's Blue Ghost lander getting encapsulated in SpaceX's rocket fairing ahead of the planned liftoff for 1:11 a.m. EST Jan. 15 from Launch Complex 39A at NASA's Kennedy Space Center in Florida
Firefly Aerospace’s Blue Ghost lander getting encapsulated in SpaceX’s rocket fairing ahead of the planned liftoff for 1:11 a.m. EST Jan. 15 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida
SpaceX

As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, the agency is preparing to fly ten instruments aboard Firefly Aerospace’s first delivery to the Moon. These science payloads and technology demonstrations will help advance our understanding of the Moon and planetary processes, while paving the way for future crewed missions on the Moon and beyond, for the benefit of all.

Firefly’s lunar lander, named Blue Ghost, is scheduled to launch on a SpaceX Falcon 9 rocket Wednesday, Jan.15, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. After a 45-day cruise phase, Blue Ghost is targeted to land near a volcanic feature called Mons Latreille within Mare Crisium, a basin approximately 340 miles wide (550 kilometers) located in the northeast quadrant of the Moon’s near side.

How can we enable more precise navigation on the Moon? How do spacecraft interact with the lunar surface? How does Earth’s magnetic field influence the effects of space weather on our home planet? NASA’s instruments on this flight will conduct first-of-their-kind demonstrations to help answer these questions and more, including testing regolith sampling technologies, lunar subsurface drilling capabilities, increasing precision of positioning and navigation abilities, testing radiation tolerant computing, and learning how to mitigate lunar dust during lunar landings.

The ten NASA payloads aboard Firefly’s Blue Ghost lander include:

  • Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER) will measure heat flow from the Moon’s interior by measuring the thermal gradient, or changes in temperature at various depths, and thermal conductivity, or the subsurface material’s ability to let heat pass through it. LISTER will take several measurements up to 10 feet deep using pneumatic drilling technology with a custom heat flow needle instrument at its tip. Data from LISTER will help scientists retrace the Moon’s thermal history and understand how it formed and cooled. Lead organization: Texas Tech University
  • Lunar PlanetVac (LPV) is designed to collect regolith samples from the lunar surface using a burst of compressed gas to drive the regolith into a sample chamber (sieving) for collection and analysis by various instruments. Additional instrumentation will then transmit the results back to Earth. The LPV payload is designed to help increase the science return from planetary missions by testing low-cost technologies for collecting regolith samples in-situ. Lead organization: Honeybee Robotics
  • Next Generation Lunar Retroreflector (NGLR) serves as a target for lasers on Earth to precisely measure the distance between Earth and the Moon by reflecting very short laser pulses from Earth-based Lunar Laser Ranging Observatories. The laser pulse transit time to the Moon and back is used to determine the distance. Data from NGLR could improve the accuracy of our lunar coordinate system and contribute to our understanding of the inner structure of the Moon and fundamental physics questions. Lead organization: University of Maryland
  • Regolith Adherence Characterization (RAC) will determine how lunar regolith sticks to a range of materials exposed to the Moon’s environment throughout the lunar day. RAC will measure accumulation rates of lunar regolith on surfaces (for example, solar cells, optical systems, coatings, and sensors) through imaging to determine their ability to repel or shed lunar dust. The data captured will help test, improve, and protect spacecraft, spacesuits, and habitats from abrasive regolith. Lead organization: Aegis Aerospace
  • Radiation Tolerant Computer (RadPC) will demonstrate a computer that can recover from faults caused by ionizing radiation. Several RadPC prototypes have been tested aboard the International Space Station and Earth-orbiting satellites, but this flight will provide the biggest trial yet by demonstrating the computer’s ability to withstand space radiation as it passes through Earth’s radiation belts, while in transit to the Moon, and on the lunar surface. Lead organization: Montana State University
  • Electrodynamic Dust Shield (EDS) is an active dust mitigation technology that uses electric fields to move and prevent hazardous lunar dust accumulation on surfaces. EDS is designed to lift, transport, and remove particles from surfaces with no moving parts. Multiple tests will demonstrate the feasibility of the self-cleaning glasses and thermal radiator surfaces on the Moon. In the event the surfaces do not receive dust during landing, EDS has the capability to re-dust itself using the same technology. Lead organization: NASA’s Kennedy Space Center
  • Lunar Environment heliospheric X-ray Imager (LEXI) will capture a series of X-ray images to study the interaction of solar wind and Earth’s magnetic field that drives geomagnetic disturbances and storms. Deployed and operated on the lunar surface, this instrument will provide the first global images showing the edge of Earth’s magnetic field for critical insights into how space weather and other cosmic forces surrounding our planet impact Earth. Lead organizations: Boston University, NASA’s Goddard Space Flight Center, and Johns Hopkins University
  • Lunar Magnetotelluric Sounder (LMS) will characterize the structure and composition of the Moon’s mantle by measuring electric and magnetic fields. This investigation will help determine the Moon’s temperature structure and thermal evolution to understand how the Moon has cooled and chemically differentiated since it formed. Lead organization: Southwest Research Institute
  • Lunar GNSS Receiver Experiment (LuGRE) will demonstrate the possibility of acquiring and tracking signals from GNSS (Global Navigation Satellite System) constellations, specifically GPS and Galileo, during transit to the Moon, during lunar orbit, and on the lunar surface. If successful, LuGRE will be the first pathfinder for future lunar spacecraft to use existing Earth-based navigation constellations to autonomously and accurately estimate their position, velocity, and time. Lead organizations: NASA Goddard, Italian Space Agency
  • Stereo Camera for Lunar Plume-Surface Studies (SCALPSS) will use stereo imaging photogrammetry to capture the impact of the rocket exhaust plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will aid in creating models to predict lunar regolith erosion, which is an important task as bigger, heavier spacecraft and hardware are delivered to the Moon in close proximity to each other. This instrument also flew on Intuitive Machines’ first CLPS delivery. Lead organization: NASA’s Langley Research Center 

Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry.

Learn more about CLPS and Artemis at: http://www.nasa.gov/clps 

Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov

Natalia Riusech / Nilufar Ramji  
Johnson Space Center, Houston 
281-483-5111 
natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Astronaut Jonny Kim Soyuz MS-27 Launch
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A Massachusetts Institute of Technology Lincoln Laboratory pilot controls a drone during NASA’s In-Time Aviation Safety Management System test series in collaboration with a George Washington University team July 17-18, 2024, at the U.S. Army’s Fort Devens in Devens, Massachusetts. MIT Lincoln Laboratory/Jay Couturier From agriculture and law enforcement to entertainment and disaster response, industries are increasingly turning to drones for help, but the growing volume of these aircraft will require trusted safety management systems to maintain safe operations.
      NASA is testing a new software system to create an improved warning system – one that can predict hazards to drones before they occur. The In-Time Aviation Safety Management System (IASMS) will monitor, assess, and mitigate airborne risks in real time. But making sure that it can do all that requires extensive experimentation to see how its elements work together, including simulations and drone flight tests.
      “If everything is going as planned with your flight, you won’t notice your in-time aviation safety management system working,” said Michael Vincent, NASA acting deputy project manager with the System-Wide Safety project at NASA’s Langley Research Center in Hampton, Virginia. “It’s before you encounter an unusual situation, like loss of navigation or communications, that the IASMS provides an alert to the drone operator.”
      The team completed a simulation in the Human-Autonomy Teaming Laboratory at NASA’s Ames Research Center in California’s Silicon Valley on March 5 aimed at finding out how critical elements of the IASMS could be used in operational hurricane relief and recovery.
      During this simulation, 12 drone pilots completed three 30-minute sessions where they managed up to six drones flying beyond visual line of sight to perform supply drops to residents stranded after a severe hurricane. Additional drones flew scripted search and rescue operations and levee inspections in the background. Researchers collected data on pilot performance, mission success, workload, and perceptions of the experiences, as well as the system’s usability.
      This simulation is part of a longer-term strategy by NASA to advance this technology. The lessons learned from this study will help prepare for the project’s hurricane relief and recovery flight tests, planned for 2027.  
      As an example of this work, in the summer of 2024 NASA tested its IASMS during a series of drone flights in collaboration with the Ohio Department of Transportation in Columbus, Ohio, and in a separate effort, with three university-led teams.
      For the Ohio Department of Transportation tests, a drone flew with the NASA-developed IASMS software aboard, which communicated back to computers at NASA Langley. Those transmissions gave NASA researchers input on the system’s performance.
      Students from the Ohio State University participate in drone flights during NASA’s In-Time Aviation Safety Management System test series in collaboration with the Ohio Department of Transportation from March to July 2024 at the Columbus Aero Club in Ohio. NASA/Russell Gilabert NASA also conducted studies with The George Washington University (GWU), the University of Notre Dame, and Virginia Commonwealth University (VCU). These occurred at the U.S. Army’s Fort Devens in Devens, Massachusetts with GWU; near South Bend, Indiana with Notre Dame; and in Richmond, Virginia with VCU. Each test included a variety of types of drones, flight scenarios, and operators.
      Students from Virginia Commonwealth University walk toward a drone after a flight as part of NASA’s In-Time Aviation Safety Management System (IASMS) test series July 16, 2024, in Richmond, Virginia. NASA/Dave Bowman Each drone testing series involved a different mission for the drone to perform and different hazards for the system to avoid. Scenarios included, for example, how the drone would fly during a wildfire or how it would deliver a package in a city. A different version of the NASA IASMS was used to fit the scenario depending on the mission, or depending on the flight area.
      Students from the University of Notre Dame prepare a small drone for takeoff as part of NASA’s In-Time Aviation Safety Management System (IASMS) university test series, which occurred on August 21, 2024 in Notre Dame, Indiana.University of Notre Dame/Wes Evard When used in conjunction with other systems such as NASA’s Unmanned Aircraft System Traffic Management, IASMS may allow for routine drone flights in the U.S. to become a reality. The IASMS adds an additional layer of safety for drones, assuring the reliability and trust if the drone is flying over a town on a routine basis that it remains on course while avoiding hazards along the way.
      “There are multiple entities who contribute to safety assurance when flying a drone,” Vincent said. “There is the person who’s flying the drone, the company who designs and manufactures the drone, the company operating the drone, and the Federal Aviation Administration, who has oversight over the entire National Airspace System. Being able to monitor, assess and mitigate risks in real time would make the risks in these situations much more secure.”
      All of this work is led by NASA’s System-Wide Safety project under the Airspace Operations and Safety program in support of the agency’s Advanced Air Mobility mission, which seeks to deliver data to guide the industry’s development of electric air taxis and drones.
      Share
      Details
      Last Updated Apr 02, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.gov Related Terms
      Advanced Air Mobility Aeronautics Research Mission Directorate Airspace Operations and Safety Program Ames Research Center Armstrong Flight Research Center Drones & You Flight Innovation Langley Research Center System-Wide Safety Explore More
      2 min read Artemis Astronauts & Orion Leadership Visit NASA Ames
      Article 1 hour ago 7 min read ARMD Solicitations (ULI Proposals Invited)
      Article 2 days ago 2 min read The Sky’s Not the Limit: Testing Precision Landing Tech for Future Space Missions
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Astronauts Victor Glover and Christina Koch tour the Arc Jet Facility at NASA’s Ames Research Center, learning more about the testing equipment’s capabilities to analyze thermal protection systems from George Raiche, thermophysics facilities branch chief at Ames.NASA/Donald Richey As NASA prepares to send astronauts to the Moon aboard the Orion spacecraft, research, testing, and development at NASA’s Ames Research Center in California’s Silicon Valley has played a critical role.
      Recently, Ames welcomed Artemis II astronauts Christina Koch and Victor Glover and Orion leaders Debbie Korth, deputy program manager, and Luis Saucedo, deputy crew and service module manager, to tour Ames facilities that support the Orion Program and celebrate the achievements of employees.
      The group started their visit at the Arc Jet Complex, where researchers use extremely hot, high-speed gases to simulate the intense heat of atmospheric reentry before visiting the Sensors & Thermal Protection Systems Advanced Research Laboratories. The team works to develop sensors and flight instrumentation that measure heat shield response throughout a mission.
      These systems were used to develop and test Orion’s thermal protection system to ensure the safety of astronauts during future missions. After the successful return of the Artemis I Orion spacecraft, Ames research was essential when analyzing unexpected charring loss on the heat shield.
      Debbie Korth, Orion deputy program manager, presents awards to the Ames workforce at the Orion Circle of Excellence Awards Ceremony, while astronauts Christina Koch and Victor Glover look on.NASA/Donald Richey The visit culminated in an award ceremony to honor employees with outstanding performance and a legacy of service to the Orion Program. Thirty-two employees were honored for their individual or team contributions.
      “The Ames workforce has played an important role in developing, testing, and validating the Orion spacecraft’s thermal protection system as well as supporting its software and guidance, navigation, and control,” said Eugene Tu, NASA Ames center director. “I’m pleased to see their contributions recognized and celebrated by program leadership and two of the astronauts whose safety and success were in mind when ensuring these systems are safe, reliable, and the highest quality possible.”
      Share
      Details
      Last Updated Apr 02, 2025 Related Terms
      Ames Research Center Artemis Christina H. Koch Exploration Systems Development Mission Directorate General Orion Program Victor J. Glover Explore More
      2 min read What Are the Dangers of Going to Space? We Asked a NASA Expert: Episode 55
      Article 1 hour ago 2 min read NASA Receives 10 Nominations for the 29th Annual Webby Awards
      Article 1 day ago 4 min read NASA Trains for Orion Water Recovery Ahead of Artemis II Launch
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Ames Research Center
      Orion Spacecraft
      Arc Jet Complex
      Thermal Protection Materials Branch
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      What are the dangers of going to space?

      For human spaceflight, the first thing I think about is the astronauts actually strapping themselves to a rocket. And if that isn’t dangerous enough, once they launch and they’re out into space in deep exploration, we have to worry about radiation.

      Radiation is coming at them from all directions. From the Sun, we have solar particles. We have galactic cosmic rays that are all over in the universe. And those cause damage to DNA. On Earth here, we use sunscreen to protect us from DNA damage. Our astronauts are protected from the shielding that’s around them in the space vehicles.

      We also have to worry about microgravity. So what happens there? We see a lot of bone and muscle loss in our astronauts. And so to prevent this, we actually have the astronauts exercising for hours every day. And of course we don’t want to run out of food on a space exploration mission. So we want to make sure that we have everything that the astronauts need to take with them to make sure that we can sustain them.

      There are many risks associated with human space exploration. NASA has been planning for these missions to make our astronauts return home safely.

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated Apr 02, 2025 Related Terms
      General Biological & Physical Sciences Human Research Program International Space Station (ISS) Science Mission Directorate Explore More
      3 min read NASA Continues Support for Private Astronaut Missions to Space Station
      Article 3 hours ago 2 min read Citizen Scientists Use NASA Open Science Data to Research Life in Space
      How can life thrive in deep space? The Open Science Data Repository Analysis Working Groups invite…
      Article 11 hours ago 2 min read NASA Receives 10 Nominations for the 29th Annual Webby Awards
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      The Roscosmos Soyuz MS-27 spacecraft will launch from the Baikonur Cosmodrome in Kazakhstan to the International Space Station with (pictured left to right) NASA astronaut Jonny Kim and Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky.Credit: Gagarin Cosmonaut Training Center NASA astronaut Jonny Kim will launch aboard the Roscosmos Soyuz MS-27 spacecraft to the International Space Station, accompanied by cosmonauts Sergey Ryzhikov and Alexey Zubritsky, where they will join the Expedition 72/73 crew in advancing scientific research.
      Kim, Ryzhikov, and Zubritsky will lift off at 1:47 a.m. EDT Tuesday, April 8 (10:47 a.m. Baikonur time) from the Baikonur Cosmodrome in Kazakhstan.
      Watch live launch and docking coverage on NASA+. Learn how to watch NASA content through a variety of platforms.
      After a two-orbit, three-hour trajectory to the station, the spacecraft will dock automatically to the station’s Prichal module at approximately 5:03 a.m. Shortly after, hatches will open between Soyuz and the space station.
      Once aboard, the trio will join NASA astronauts Nichole Ayers, Anne McClain, and Don Pettit, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonauts Alexey Ovchinin, Kirill Peskov, and Ivan Vagner.
      NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Tuesday, April 8
      12:45 a.m. – Launch coverage begins on NASA+.
      1:47 a.m. – Launch
      4:15 a.m. – Rendezvous and docking coverage begins on NASA+.
      5:03 a.m. – Docking
      7 a.m. – Hatch opening and welcome remarks coverage begins on NASA+.
      7:20 a.m. – Hatch opening
      The trio will spend approximately eight months aboard the orbital laboratory as Expedition 72 and 73 crew members before returning to Earth in December. This will be the first flight for Kim and Zubritsky, and the third for Ryzhikov.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of the Artemis campaign in preparation for future human missions to Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 02, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Humans in Space ISS Research Johnson Space Center Space Operations Mission Directorate View the full article
  • Check out these Videos

×
×
  • Create New...