Members Can Post Anonymously On This Site
Newly Selected Citizen Science Proposals: A Peek at What’s Next
-
Similar Topics
-
By NASA
Firefly Aerospace’s Blue Ghost lander getting encapsulated in SpaceX’s rocket fairing ahead of the planned liftoff for 1:11 a.m. EST Jan. 15 from Launch Complex 39A at NASA’s Kennedy Space Center in FloridaSpaceX As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, the agency is preparing to fly ten instruments aboard Firefly Aerospace’s first delivery to the Moon. These science payloads and technology demonstrations will help advance our understanding of the Moon and planetary processes, while paving the way for future crewed missions on the Moon and beyond, for the benefit of all.
Firefly’s lunar lander, named Blue Ghost, is scheduled to launch on a SpaceX Falcon 9 rocket Wednesday, Jan.15, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. After a 45-day cruise phase, Blue Ghost is targeted to land near a volcanic feature called Mons Latreille within Mare Crisium, a basin approximately 340 miles wide (550 kilometers) located in the northeast quadrant of the Moon’s near side.
How can we enable more precise navigation on the Moon? How do spacecraft interact with the lunar surface? How does Earth’s magnetic field influence the effects of space weather on our home planet? NASA’s instruments on this flight will conduct first-of-their-kind demonstrations to help answer these questions and more, including testing regolith sampling technologies, lunar subsurface drilling capabilities, increasing precision of positioning and navigation abilities, testing radiation tolerant computing, and learning how to mitigate lunar dust during lunar landings.
The ten NASA payloads aboard Firefly’s Blue Ghost lander include:
Lunar Instrumentation for Subsurface Thermal Exploration with Rapidity (LISTER) will measure heat flow from the Moon’s interior by measuring the thermal gradient, or changes in temperature at various depths, and thermal conductivity, or the subsurface material’s ability to let heat pass through it. LISTER will take several measurements up to 10 feet deep using pneumatic drilling technology with a custom heat flow needle instrument at its tip. Data from LISTER will help scientists retrace the Moon’s thermal history and understand how it formed and cooled. Lead organization: Texas Tech University
Lunar PlanetVac (LPV) is designed to collect regolith samples from the lunar surface using a burst of compressed gas to drive the regolith into a sample chamber (sieving) for collection and analysis by various instruments. Additional instrumentation will then transmit the results back to Earth. The LPV payload is designed to help increase the science return from planetary missions by testing low-cost technologies for collecting regolith samples in-situ. Lead organization: Honeybee Robotics
Next Generation Lunar Retroreflector (NGLR) serves as a target for lasers on Earth to precisely measure the distance between Earth and the Moon by reflecting very short laser pulses from Earth-based Lunar Laser Ranging Observatories. The laser pulse transit time to the Moon and back is used to determine the distance. Data from NGLR could improve the accuracy of our lunar coordinate system and contribute to our understanding of the inner structure of the Moon and fundamental physics questions. Lead organization: University of Maryland
Regolith Adherence Characterization (RAC) will determine how lunar regolith sticks to a range of materials exposed to the Moon’s environment throughout the lunar day. RAC will measure accumulation rates of lunar regolith on surfaces (for example, solar cells, optical systems, coatings, and sensors) through imaging to determine their ability to repel or shed lunar dust. The data captured will help test, improve, and protect spacecraft, spacesuits, and habitats from abrasive regolith. Lead organization: Aegis Aerospace
Radiation Tolerant Computer (RadPC) will demonstrate a computer that can recover from faults caused by ionizing radiation. Several RadPC prototypes have been tested aboard the International Space Station and Earth-orbiting satellites, but this flight will provide the biggest trial yet by demonstrating the computer’s ability to withstand space radiation as it passes through Earth’s radiation belts, while in transit to the Moon, and on the lunar surface. Lead organization: Montana State University
Electrodynamic Dust Shield (EDS) is an active dust mitigation technology that uses electric fields to move and prevent hazardous lunar dust accumulation on surfaces. EDS is designed to lift, transport, and remove particles from surfaces with no moving parts. Multiple tests will demonstrate the feasibility of the self-cleaning glasses and thermal radiator surfaces on the Moon. In the event the surfaces do not receive dust during landing, EDS has the capability to re-dust itself using the same technology. Lead organization: NASA’s Kennedy Space Center
Lunar Environment heliospheric X-ray Imager (LEXI) will capture a series of X-ray images to study the interaction of solar wind and Earth’s magnetic field that drives geomagnetic disturbances and storms. Deployed and operated on the lunar surface, this instrument will provide the first global images showing the edge of Earth’s magnetic field for critical insights into how space weather and other cosmic forces surrounding our planet impact Earth. Lead organizations: Boston University, NASA’s Goddard Space Flight Center, and Johns Hopkins University
Lunar Magnetotelluric Sounder (LMS) will characterize the structure and composition of the Moon’s mantle by measuring electric and magnetic fields. This investigation will help determine the Moon’s temperature structure and thermal evolution to understand how the Moon has cooled and chemically differentiated since it formed. Lead organization: Southwest Research Institute
Lunar GNSS Receiver Experiment (LuGRE) will demonstrate the possibility of acquiring and tracking signals from GNSS (Global Navigation Satellite System) constellations, specifically GPS and Galileo, during transit to the Moon, during lunar orbit, and on the lunar surface. If successful, LuGRE will be the first pathfinder for future lunar spacecraft to use existing Earth-based navigation constellations to autonomously and accurately estimate their position, velocity, and time. Lead organizations: NASA Goddard, Italian Space Agency
Stereo Camera for Lunar Plume-Surface Studies (SCALPSS) will use stereo imaging photogrammetry to capture the impact of the rocket exhaust plume on lunar regolith as the lander descends on the Moon’s surface. The high-resolution stereo images will aid in creating models to predict lunar regolith erosion, which is an important task as bigger, heavier spacecraft and hardware are delivered to the Moon in close proximity to each other. This instrument also flew on Intuitive Machines’ first CLPS delivery. Lead organization: NASA’s Langley Research Center
Through the CLPS initiative, NASA purchases lunar landing and surface operations services from American companies. The agency uses CLPS to send scientific instruments and technology demonstrations to advance capabilities for science, exploration, or commercial development of the Moon. By supporting a robust cadence of lunar deliveries, NASA will continue to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry.
Learn more about CLPS and Artemis at: http://www.nasa.gov/clps
Alise Fisher
Headquarters, Washington
202-358-2546
alise.m.fisher@nasa.gov
Natalia Riusech / Nilufar Ramji
Johnson Space Center, Houston
281-483-5111
natalia.s.riusech@nasa.gov / nilufar.ramji@nasa.gov
View the full article
-
By NASA
Measurements from space support wildfire risk predictions
Researchers demonstrated that data from the International Space Station’s ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) instrument played a significant role in the ability of machine learning algorithms to predict wildfire susceptibility. This result could help support development of effective strategies for predicting, preventing, monitoring, and managing wildfires.
As the frequency and severity of wildfires increases worldwide, experts need reliable models of fire susceptibility to protect public safety and support natural resource planning and risk management. ECOSTRESS measures evapotranspiration, water use efficiency, and other plant-water dynamics on Earth. Researchers report that its water use efficiency data consistently emerged as the leading factor in predicting wildfires, with evaporative stress and topographic slope data also significant.
This ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station evapotranspiration image of California’s Central Valley in May 2022 shows high water use (blue) and dry conditions (brown). NASA Combining instruments provides better emissions data
Scientists found that averaging data from the International Space Station’s OCO‐3 and EMIT external instruments can accurately measure the rate of carbon dioxide emissions from power plants. This work could improve emissions monitoring and help communities respond to climate change.
Carbon dioxide emissions from fossil fuel combustion make up nearly a third of human-caused emissions and are a major contributor to climate change. In many places, though, scientists do not know exactly how much carbon dioxide these sources emit. The Orbiting Carbon Observatory-3 or OCO-3 can quantify emissions over large areas and Earth Surface Mineral Dust Source Investigation data can help determine emissions from individual facilities. The researchers suggest future work continue to investigate the effect of wind conditions on measurements.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
The The Orbiting Carbon Observatory-3 data showing carbon dioxide concentrations in Los Angeles. NASA Thunderstorm phenomena observed from space
Observations by the International Space Station’s Atmosphere-Space Interactions Monitor (ASIM) instrument during a tropical cyclone in 2019 provide insight into the formation and nature of blue corona discharges often observed at the tops of thunderclouds. A better understanding of such processes in Earth’s upper atmosphere could improve atmospheric models and weather and climate predictions.
Scientists do not fully understand the conditions that lead to formation of blue corona discharges, bursts of electrical streamers, which are precursors to lightning. Observations from the ground are affected by scattering and absorption in the clouds. ASIM, a facility from ESA (European Space Agency), provides a unique opportunity for observing these high-atmosphere events from space.
View of Atmosphere-Space Interactions Monitor, the white and blue box on the end of the International Space Station’s Columbus External Payload Facility. NASAView the full article
-
By NASA
Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 32 min read
Summary of the 2024 NASA LCLUC Science Team Meeting
Introduction
The 2024 NASA Land-Cover and Land-Use Change (LCLUC) Science Team Meeting (STM) took place from April 2–4, 2024 at the Marriott Washingtonian Center in Gaithersburg, MD. During the meeting, 75 people attended in-person. Represented among the attendees were LCLUC project investigators and collaborators, NASA Headquarters (HQ) program managers, and university researchers and students – see Photo.
LCLUC is an interdisciplinary scientific program within NASA’s Earth Science program that aims to develop the capability for periodic global inventories of land use and land cover from space. The program’s goal is to develop the scientific understanding and models necessary to simulate the processes taking place and to evaluate the consequences of observed and predicted changes.
The LCLUC program’s focus is divided into three areas – impacts, monitoring, and synthesis. Each category constitutes about one-third of the program’s content. The LCLUC program is part of the Carbon Cycle and Ecosystems research area, alongside other programs, such as Terrestrial Ecosystems, Ocean Biology and Biogeochemistry, and Biodiversity.
Within NASA’s Earth Science Division (ESD), the LCLUC program collaborates with the Earth Science Technology Office (ESTO), the Earth Action Program element on Agriculture, and data initiatives, such as Harmonized Landsat Sentinel-2 (HLS), Observational Products for End-Users from Remote Sensing Analysis (OPERA), and the Commercial SmallSat Data Acquisition (CSDA) program. Externally, the program engages the U.S. Global Climate Research Program (USGCRP), U.S. Geological Survey (USGS), the U.S. Department of Agriculture (USDA), and the U.S. Forest Service (USFS). Internationally, the program collaborates with Global Observations of Forest Cover and Land-use Dynamics (GOFC-GOLD), the Group on Earth Observations (GEO), particularly Group on Earth Observations Global Agricultural Monitoring (GEOGLAM), the Global Land Program (GLP), as well as regional initiatives – e.g., the South and Southeast Asia Regional Initiative (SARI), and space agencies, including the European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA), Geo-Informatics and Space Technology Development Agency (GISTDA)–Thailand, Vietnam National Space Center (VNSC), and the Indian Space Research Organisation (ISRO).
Principal Investigators (PIs) who participate in LCLUC are required to provide free and open access to their data and products via their metadata pages, aligning with NASA’s Transform to Open Science (TOPS) initiative. The program organizes at least one international regional workshop and one domestic ST meeting each year to share LCLUC science and foster global collaborations, contributing to regional capacity-building as an added value. Additionally, the program hosts regular webinars led by PIs on topics such as agriculture, urban areas, land-use changes in conflict zones, and natural disaster hotspots (i.e., fires, droughts, and floods). Garik Gutman [NASA HQ—LCLUC Program Manager] presented updates on LCLUC research publications, journal special issues, and upcoming international meetings.
The remainder of this article summarizes the highlights of the 2024 LCLUC STM. The content is organized chronologically, with a section devoted to describing each day of the meeting and descriptive headers throughout. The full presentations from this meeting are available on the LCLUC meeting website.
Photo. A group picture of meeting participants on the first day of the 2024 LCLUC meeting in Gaithersburg, MD. Photo credit: Hotel staff (Marriott Washingtonian Center, Gaithersburg, MD) DAY ONE
The first day featured invited presentations, reports from LCLUC ST members funded through the LCLUC Research Opportunities in Space and Earth Sciences (ROSES) 2022 selections, and an overview of SARI. The day concluded with poster presentations and lightning talks highlighting recent results from ongoing LCLUC-related research.
Update from the LCLUC Program Manager
The meeting began with welcoming remarks from Garik Gutman, who provided an update on the program’s latest developments and achievements. He highlighted that the socioeconomic component is an integral part of most LCLUC projects. The program has recently expanded to include multisource land imaging, such as the ESA’s Copernicus Sentinel program, regional initiatives, and capacity-building efforts. He also underscored the importance of U.S. missions relevant to LCLUC, which produce spatially coarse resolution daily data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Aqua and Terra platforms and the NASA–National Oceanic and Atmospheric Administration (NOAA) Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi NPP); spatially moderate resolution data every eight days from the NASA–USGS Landsat-8 (L8) and Landsat-9 (L9) satellites; and very high-resolution data from private companies, such as Planet Inc. and Maxar.
Gutman also discussed how LCLUC investigators are using data from missions on the International Space Station (ISS), e.g., ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), Global Ecosystem Dynamics Investigation (GEDI), and Earth Surface Mineral Dust Source Investigation (EMIT). He noted the potential of radar observations from the recently launched international Surface Water and Ocean Topography (SWOT) mission – led by NASA and the Centre National d’Études Spatiales [French Space Agency] – and the upcoming NASA-ISRO Synthetic Aperture Radar (NISAR) mission (planned for launch in 2025).
LCLUC in the Broader Context of NASA
Jack Kaye [ESD—Associate Director for Research] gave an update on ESD activities that reflected on NASA’s broad capabilities in Earth Science – emphasizing the agency’s unique role in both developing and utilizing cutting-edge technology. Unlike many other agencies, NASA’s scope spans technology development, research, data provision, and tool creation. Over the past 16 months, NASA has launched several significant missions, including SWOT, Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS), Tropospheric Emissions: Monitoring of Pollution (TEMPO), and Plankton, Aerosol, Cloud, ocean Ecosystem (PACE). This surge in satellite launches highlights NASA’s role in enhancing global observational capabilities. NASA also supports a diverse array of programs, including airborne campaigns and surface-based measurement networks. Initiatives aim to improve the involvement of minority-serving institutions and incorporate open science practices with a focus on enhancing inclusivity and expanding participation. The agency also emphasizes the importance of peer review and collaboration with international and community-based partners. Kaye highlighted NASA’s commitment to producing high-quality, actionable science while navigating financial and operational challenges. This commitment extends to addressing environmental and societal impacts through programs such as Earth Action and by fostering global collaboration.
Sid Ahmed Boukabara [ESD—Senior Program Scientist for Strategy] presented a detailed overview of NASA’s Earth Science to Action Strategy, which aims to increase the impact of Earth science in addressing global challenges. This strategy acknowledges the urgency of global changes, e.g., accelerating environmental shifts, understanding Earth’s interconnected systems, and developing scalable information. NASA’s mission focuses on observing and understanding the Earth system, delivering trusted information, and empowering resilience activities through advanced technologies, partnerships, and innovations. Key principles include amplifying impact through partnerships, engaging a diverse and inclusive workforce, balancing innovation with sustainability, encouraging cutting-edge capabilities, and ensuring robust and resilient processes. The strategy emphasizes collaboration across sectors and international partnerships to leverage Earth observations enhance the value of Earth science for decision-making and policy support. The strategy also highlights the role of land-cover and land-use change activities in supporting objectives and enhancing modeling capabilities.
Thomas Wagner [ESD—Associate Director for Earth Action] outlined NASA’s Earth Action initiative (formerly known as the Applications Program), which focuses on user-centered strategies to address global challenges, e.g., climate resilience, health, and ecological conservation. By integrating applied sciences and leveraging satellite data, the initiative aims to enhance Earth observation capabilities and connect scientific research with practical applications to meet societal needs. The strategy includes a virtuous cycle, where user feedback informs the development of future programs and missions, ensuring that research and technology are aligned with real-world needs. Additionally, Earth Action emphasizes public engagement by offering open-source models and data to enhance understanding and support decision making. Through multisector consortia and problem-solving teams, the initiative addresses urgent and broad-impact issues, fostering innovation and collaboration.
Updates from LCLUC PIs on 2022 ROSES Proposal Selections
Following the programmatic overview presentations, PIs presented updates on research results from LCLUC ROSES 2022 proposal selections. Gillian Galford [University of Vermont] presented on the socioeconomic and environmental dynamics of LCLUC in the Cerrado frontier of Brazil. She presented results from the three main objectives: developing LCLUC detection methods and datasets, characterizing major land-use transitions (LUTs), and understanding the drivers behind these transitions. The research employs remote-sensing and geostatistical methods to track changes, identify “hotspots” of activity, and understand the underlying motivations for land-use changes. The research aims to provide insights that can guide conservation efforts and promote sustainable land use in the region.
Gustavo Oliveira [Clark University] presented “Irrigation as Climate-Change Adaptation in the Cerrado Biome of Brazil.” This project aims to develop methods for analyzing LCLUC data and their socioeconomic impacts, examining the expansion of irrigated agriculture and creating models to inform policy on agrarian development and water regulations. Oliveira highlighted areas of significant deforestation and the rapid growth of irrigated agriculture in the study region – positioning Western Bahia as a model for irrigation in Brazil. He explained that the research outputs include software for time series analysis and publications on land change, contributing to the broader understanding of climate adaptation strategies in the region.
Grant Connette [Smithsonian Institution] presented “Can Improved Stakeholder Representation Prevent Human-caused Mangrove Loss in the Mesoamerican Reef Ecoregion?” He examined the factors contributing to mangrove loss in the Mesoamerican Reef (MAR) ecoregion. Through a combination of Earth observation data, socioeconomic analysis, and community engagement, Connette described how the study seeks to improve the effectiveness of protected areas and inform best practices for mangrove conservation in the MAR ecoregion.
Saurav Kumar [Arizona State University] presented his team’s work, “Exploring the Nexus between LCLUC, Socio-Economic Factors, and Water for a Vulnerable Arid U.S.–Mexico Transboundary Region.” Kumar explained that the project aims to understand how natural and human systems influence LCLUC when constrained by water availability. The data used in this project come from a combination of time series data, theoretical model output, and artificial intelligence techniques. The team also focuses on stakeholder engagement, recognizing the need for comprehensive identification and involvement in addressing complex water resource issues. Kumar explained that the study seeks to predict future LCLUC transitions, assess the theoretical models of different stakeholder groups, and identify policy-relevant leverage points for sustainable water management.
Abena Boatemaa Asare-Ansah [University of Maryland, College Park (UMD)] presented on “The Multisensor Mapping of Refugee Agricultural LCLUC Hotspots in Uganda.” She explained that this study focuses on mapping changes in cropland within refugee-hosting regions using satellite data and deep learning models. Asare-Ansah described how the first year involved evaluating existing cropland maps and initiating new classifications. Future work will refine these maps and connect cropland changes to specific refugee households, aiming to better understand the relationship between refugee populations, food aid, and agricultural practices.
Elsa Ordway [University of California, Los Angeles (UCLA)] discussed her team’s efforts toward “Disentangling Land-Use Change in Central Africa to Understand the Role of Local and Indigenous Communities in Forest Restoration and Conservation.” Ordway reported that the project focuses on mapping land cover and carbon emissions, analyzing the impact of conservation efforts, and exploring potential forest restoration opportunities. She emphasized that this research highlights the critical role of local indigenous communities in forest management and the unintended consequences of conservation projects on land use – see Photo 2.
Photo 2. Some residents of a village neighboring the Dja reserve – part of the dense rain forests that form Africa’s Congo Basin. Interviews and surveys among the area’s local and indigenous communities are used to gather information on forest restoration and conservation. Photo credit: Else Ordway (UCLA) Ordway also presented on the PAN-tropical investigation of BioGeochemistry and Ecological Adaptation (PANGEA), which aims to investigate the biogeochemistry and ecological adaptation of tropical forests that are crucial for global climate regulation and biodiversity. She explained that this study emphasizes the rapid changes occurring in tropical regions primarily due to deforestation and climate change. PANGEA seeks to answer key scientific questions about the vulnerability and resilience of these ecosystems, and how this information can inform climate adaptation, mitigation, and biodiversity conservation efforts.
The ARID Experiment
Andrew Feldman [NASA’s Goddard Space Flight Center (GSFC)] presented on the Adaptation and Response in Drylands (ARID) experiment, a field campaign focused on dryland ecosystems. He described how this project aims to understand the fundamental science of drylands, including water availability, land–atmosphere interactions, climate variability, carbon stocks, and land management. The study involves significant international collaboration and stakeholder engagement, with a particular focus on the Western U.S – see Figure 1. While this project is in planning stages, ongoing efforts will be made to engage with the scientific community, gather feedback, and refine its research themes.
Figure 1. The Adaptation and Response in Drylands (ARID) experiment focuses on studying the characteristics of dryland ecosystems, e.g., water availability, land–atmosphere interactions, climate variability, carbon stocks, and land management. While the experiment is global in scope, it has a focus on the Western U.S., with numerous site locations across the desert Southwest and some in the Pacific Northwest. Figure credit: Andrew Feldman (NASA/UMD) SARI Update and Related Projects
Krishna Vadrevu [NASA’s Marshall Space Flight Center] gave a comprehensive update on SARI, a regional initiative under the LCLUC program that addresses the critical needs of the South/Southeast Asia region by integrating remote sensing, natural sciences, engineering, and social sciences. His presentation covered the initiative’s background, various funded research projects, and their outputs. The diverse SARI projects include studies on forest degradation, agricultural transitions, food security, urbanization, and their environmental impacts. SARI has supported 35 research projects, engaging more than 400 scientists and over 200 institutions that result in significant scientific contributions, including nearly 450 publications, 16 special journal issues, and five books with two additional books pending publication. Vadrevu emphasized the importance of sustainable land use policies informed by LCLUC research and provided details on upcoming meetings. He concluded with information on three ongoing projects funded under the SARI synthesis solicitation – one in South Asia and two in Southeast Asia. Summaries of these projects are highlighted below.
David Skole [Michigan State University (MSU)] leads the SARI synthesis project that spans South Asian countries, with an emphasis on tree-based systems, particularly Trees Outside Forests (TOF). The primary objective is to synthesize existing research to better understand the patterns, drivers, and impacts of TOF on carbon emissions and removals and their role in supporting rural livelihoods. This research is crucial for informing climate change policy, particularly in the context of nature-based solutions and pathways to achieve net-zero emissions. The project combines empirical data with process-based research and policy models to support the development of sustainable landscapes. By integrating biophysical and socioeconomic data, the project team members aim to provide robust, evidence-based contributions to climate mitigation and adaptation strategies, ultimately guiding regional policy decisions.
Son Nghiem [NASA/Jet Propulsion Laboratory] discussed the interrelated dynamics of LCLUC and demographic changes in Southeast Asia under various developmental pressures and climate change. Nghiem explained that the study explores how these factors interact along the rural-to-urban continuum across regions in Cambodia, the Lao People’s Democratic Republic (Laos), Thailand, Vietnam, Malaysia, and parts of Indonesia. In rapidly urbanizing and agriculturally transitioning areas, physical and human feedback processes are becoming non-stationary, leading to unpredictable impacts that challenge traditional policymaking. The study aims to capture both physical patterns (e.g., land-use) and human (socioeconomic) fabrics, integrating these within a framework to assess whether the statistical properties of the time series measured during this study remain constant or change with time.
Peilei Fan [Tufts University] presented the project, “Decoding Land Transitions Across the Urban-Rural Continuums (URC): A Synthesis Study of Patterns, Drivers, and Socio-Environmental Impacts in Southeast Asia.” The project aims to synthesize knowledge through an interdisciplinary approach. It focuses on URCs in 19 cities across eight Southeast Asian countries. It investigates how global urban hierarchies, URC connectivity, and local policies influence land-use change and related ecosystem impacts. By integrating remote-sensing data with climate and ecological models and socioeconomic analysis, the project seeks to advance theoretical understanding of land transitions and provide valuable insights for both scientific research and policymaking.
Poster sessions
Following the presentations, participants gave lightning talks linked to 17 posters, which highlighted recent results from ongoing LCLUC projects and LCLUC-related research from the Future Investigators in NASA Earth and Space Science and Technology (FINESST) and the Inter-Disciplinary Research in Earth Science (IDS) programs. A reception followed. PDF versions of the posters can be accessed on the meeting website.
DAY TWO
The second day of the meeting continued with additional presentations from the LCLUC ROSES 2022 projects and updates from international programs. In addition, the attendees listened to presentations from NASA HQ and NASA Centers, describing various initiatives and data products, such as from the Socio-Economic Data and Applications Center (SEDAC).
Updates from LCLUC PIs on ROSES 2022 Proposal Selections (cont.)
Cascade Tuholske [Montana State University] presented “Modulation of Climate Risks Due to Urban and Agricultural Land Uses in the Arabian Peninsula.” Tuholske explained how this project aims to map LCLUC, assess the effects on extreme humid heat, and characterize the socio-demographics of exposure to heat stress – see Figure 2. Key findings include evidence of a rapid increase in dangerously hot and humid weather – particularly in urban and agricultural areas – and the importance of remote sensing in studying these interactions. Future steps will involve using climate models to predict the effects of LCLUC on heat waves, water stress, and dust storms.
Figure 2. The Ghana Climate Hazards Center Coupled Model Intercomparison Project (CMIP) Phase 6 climate projection dataset map of temperatures exceeding 41 °C (106 °F) [left], future climate projection (SSP) for 2050 [middle], and the difference between the two [right]. Figure credit: From a 2024 paper in the journal Scientific Data Monika Tomaszewska [MSU] provided details on the project, “Institutional Forcings on Agricultural Landscapes in Post-Socialist Europe: Diachronic Hotspot Analysis of Common Agricultural Policy Influences on Agricultural Land Use in Romania 2002–2024.” She explained that the project focuses on how the EU’s common agricultural policy (CAP) programs (e.g., livelihood payments, environmental protections, and rural development projects) have influenced land use changes – see Figure 3. Tomaszewska summarized key findings from the study, which indicates significant changes in crop composition and spatial patterns – with notable decreases in maize and rapeseed areas between 2018 and 2023. She stated that the study aims to understand the diffusion of innovation through CAP enrollments and payments and their impact on agricultural practices in Romania.
Figure 3. Dense time series of Harmonized Landsat Sentinel-2 (HLS) data at 30-m (98-ft) resolution revealing winter and summer crops across Southern Romania in 2018 [top] and 2023 [bottom]. Magenta areas indicate forests, green areas represent summer crops (e.g., maize, sunflower, soy), and blue areas show winter crops (e.g., wheat, barley, rapeseed). Yellow areas indicate very low spring Enhanced Vegetative Index-2 due to snow or persistent clouds at higher elevations. Figure credit: Geoff Henebry (MSU) Xiao-Peng Song [UMD] presented “Energy LCLUC Hotspot: Characterizing the Dynamics of Energy Land Use and Assessing Environmental Impacts in the Permian Basin.” He said that the project aims to assess the environmental impacts of energy-related land-cover and land-use change in the region. Song showed the output from the project, which includes high-resolution LCLUC and geohazard maps that enhance understanding of energy-related environmental impacts and contribute to NASA’s LCLUC program. Results from this study are expected to inform decision makers on societal issues related to oil and gas production and its effects on the environment.
International Partner Program Updates
The International Partners Programs session featured four presentations. Ariane DeBremond [UMD] focused on the Global Land Programme (GLP), which is a comprehensive, global initiative dedicated to understanding and addressing changes in land systems and their implications for sustainability and justice. DeBremond described the program, which coordinates research on land use, land management, and land cover changes,. She emphasized land systems as social-ecological systems and fostering interdisciplinary collaboration to develop solutions for global challenges. The research agenda includes descriptive, normative, and transformative aspects, aimed at characterizing land systems, identifying causes and impacts of changes, and creating pathways for sustainability transformations. GLP also emphasizes the need for new remote-sensing data, improved generalizability, and addressing geographic biases in land system science. Recent program activities include developing a new science plan, identifying emerging themes, and organizing open science meetings. DeBremond ended by announcing that the next GLP meeting is scheduled for November 2024 in Oaxaca, Mexico.
David Skole outlined the efforts of the Global Observations of Forest and Land Cover Dynamics (GOFC–GOLD) Land Implementation Team (LC–IT) in advancing methods and tools for global land cover measurements and monitoring. The LC–IT is primarily focused on developing and evaluating space-borne and in-situ observation techniques to support global change research, forest inventories, and international policy. Skole highlighted the importance of regional networks in coordinating the use of Earth Observation (EO) data, facilitating capacity building, and addressing regional concerns through workshops and partnerships. He also discussed the changing role of EO in responding to climate change and sustainability challenges, emphasizing the need for high-integrity carbon finance and the integration of new data and technologies to support nature-based solutions. He concluded with insights into the BeZero Carbon Rating system, which evaluates carbon efficacy across various projects worldwide and highlights the need for reliable ratings to ensure the credibility of carbon markets.
David Roy [MSU] detailed the work of the GOFC-GOLD Fire Implementation Team, which focuses on improving the accuracy and utility of satellite-based fire monitoring. The team is working to enhance global fire observation requirements, particularly for small fires and those with low Fire Radiative Power, which are often underrepresented in current datasets. Roy emphasized the need for continuous development and validation of satellite-derived fire products, including a robust quality assurance framework. The team advocates for standardized methods to validate fire data and harmonize information from various satellite missions to create a more comprehensive global fire record. Roy also highlighted the need for new satellite missions with advanced fire detection capabilities and the use of machine learning to improve fire modeling and data accessibility to provide more accurate and actionable data for global change research and fire management.
Alexandra Tyukavina [UMD] presented on Land Product Validation (LPV) subgroup of the Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV). The LPV is focused on updating land cover validation guidelines, incorporating new literature and data from the past 20 years. Tyukavina emphasized the need for rigorous accuracy assessment in land cover studies, highlighting the need to improve methods and reporting as well as accuracy. She also discussed the outcomes of a NASA-sponsored joint cropland validation workshop co-hosted by CEOS and GEOGLAM, which aimed to set minimum requirements for cropland validation and develop community guidelines. Tyukavina concluded her presentation with a call for reviewers to assist in updating these guidelines.
LCLUC Program Crosswalks
The Crosswalks, a LCLUC program, featured six presentations. Frederick Policelli [GSFC] presented on the CSDA program, which supports the ESD by acquiring and utilizing commercial, small-satellite data to enhance Earth science research. Launched as a pilot in November 2017, the program became a sustained effort in 2020, transitioning from Blanket Purchase Agreements to Indefinite-Delivery, Indefinite-Quantity contracts for better data management. The CSDA also introduced a tiered End User License Agreement for data usage and focuses on long-term data preservation and broad access. Policelli described how program participants collaborate with U.S. government agencies and international partners, adhering to the 2003 U.S. Commercial Remote Sensing Policy. He discussed recent developments, which include onboarding new commercial data vendors and expanding the program’s capabilities.
Jacqueline Le Moigne [ESTO] provided details on NASA’s Earth Science Technology Office’s (ESTO), Advanced Information Systems Technology (AIST) program and its development of Earth System Digital Twins (ESDT). She explained that ESDTs are intended to be dynamic, interactive systems that replicate the Earth’s past and current states, forecast future states, and assess hypothetical scenarios. They should integrate continuous data from diverse sources, utilize advanced computational and visualization capabilities, and rely heavily on machine learning for data fusion, super-resolution, and causal reasoning. Le Moigne added that ESDTs enhance our understanding of Earth systems, their interactions, and applications, particularly in the context of climate change. She highlighted various use cases (e.g., wildfires, ocean carbon processes, the water cycle, and coastal zones) demonstrating the potential of ESDTs to support decision-making and policy planning.
Roger Pielke [University of Colorado, Boulder] discussed the critical need to incorporate land-use data into weather forecasts and climate models to improve understanding of and address climate change. He emphasized the distinction between weather and climate, explaining that climate is dynamic and influenced by both natural and human factors. Pielke critiqued the focus of the approach of the Intergovernmental Panel on Climate Change (IPCC) on carbon dioxide (CO2) emissions as the primary driver of climate change, arguing that LCLUC should be considered as an equally important climate forcing. He illustrated how changes in land cover, such as in Florida and the Great Plains, can significantly impact local and regional climate, sometimes rivaling the effects of CO2. Pielke called for integrating land-use data into climate models across all scales, suggesting that NASA’s programs could lead in this effort to enhance climate forecasting and policymaking.
Brad Doorn [NASA HQ—Program Manager, NASA’s Earth Action Agriculture Program] presented an overview of the program’s status and strategic direction. He emphasized the importance of partnerships, particularly with the USDA, in advancing initiatives like Climate Smart Agriculture. NASA’s role in global food security and supply chain monitoring was highlighted through the activities of NASA’s Harvest and Acres, agriculture and food security consortia, both of which enable collaborative research to codevelop data-driven products and services and enhance predictive models to meet end-user needs. Doorn stressed the need for strong collaborations with the private sector, non-governmental organizations, and other space agencies to accelerate the development of agricultural solutions. He also highlighted the significance of integrating NASA’s capabilities in weather, water, and crop monitoring systems to provide comprehensive tools for stakeholders. Doorn explained that the program aims to bridge gaps between NASA’s observations and practical applications in agriculture, leveraging tools, such as the Global Crop Monitor, and integrating predictive capabilities for improved future planning.
Rachel Paseka [NASA HQ] presented on NASA’s open science funding opportunities with a focus on the ROSES F.7 element, which supports widely used open-source software tools, frameworks, and libraries within the NASA science community. She described the program, which offers two types of awards: Foundational Awards for projects that impact multiple divisions and Sustainment Awards for those affecting one or more divisions of the Science Mission Directorate. Foundational Awards are cooperative agreements lasting up to five years. Sustainment Awards can be grants or cooperative agreements lasting up to three years. Paseka also emphasized the importance of open science, highlighting various tools, data challenges, and collaborative efforts, including artificial intelligence (AI) models for tasks (e.g., flood detection and burn scar mapping). She concluded with an introduction of the Science Explorer (SciX) digital library and the Science Discovery Engine, both of which facilitate access to NASA’s open science data and research.
Alex de Sherbinin [SocioEconomic Data and Applications Center (SEDAC), Center for International Earth Science Information Network (CIESIN), Columbia University] provided an overview of datasets and research related to climate risk, social vulnerability, and environmental change. de Sherbinin outlined the SocioEconomic Data and Applications Center (SEDAC) mission areas, which include population land-use and emissions, mitigation, vulnerability and adaptation, hazard vulnerability assessment, poverty and food security, and environment and sustainable development. He highlighted key SEDAC datasets (e.g., LCLUC and Urban and Settlements Datasets) and their use in analyses. SEDAC data and services are accessible via tools, such as Global Forest Watch and Google Earth Engine. de Sherbinin also covered recent research citations, the impact of studies on biodiversity and urban changes, and SEDAC’s contributions to open science and training initiatives. He also emphasized the importance of integrating remote sensing data with social and health sciences for comprehensive environmental analysis.
DAY THREE
The third day of the meeting focused on satellite missions and data product updates and a LCLUC program feedback session on emerging science directions.
Landsat Mission Updates
Chris Neigh [GSFC—Landsat 9 Project Scientist] provided an overview of the status of the current Landsat missions that are in orbit (L7, L8, and L9]. He reported that all L9 Level-1 requirements have now been met and exceeded. OLI-2, the updated sensor for L9, transmits data at 14 bits compared to the L8 12-bit transmission, allowing for finer data resolution. OLI-2 offers a 25–30% improvement in the signal-to-noise ratio for dark targets, leading to enhanced data quality. The Thermal Infrared Sensor on L9 (TIRS-2) has also been improved over TIRS on L7 and L8, to mitigate stray light issues, enhancing the reliability of thermal data. Additionally, OLI-2 supports better atmospheric corrections through split window techniques using both of its channels. With two operational observatories, L8 and L9, equipped with advanced radiometry, data is provided every eight days, ensuring consistent and precise Earth observation capabilities. The radiometric and geometric performance of L9 is excellent from a Calibration/Validation (Cal/Val) perspective.
While all systems are nominal for L8 and L9, Neigh reported that L7 is nearing the end of its operational life. He stated that the Landsat Cal/Val team will continue its work for the duration of the mission as a joint USGS–NASA effort. He also highlighted the need for a global Analysis Ready Data framework and the development of proxy and simulated datasets to support the next generation of Landsat missions. Neigh ended by reporting that opportunities exist for scientists to share their high-profile, Landsat-based research through the program’s communications team.
Bruce Cook [GSFC—Landsat Next Project Scientist] provided an update on the Landsat Next mission, an ambitious extension of the Landsat Program under the Sustainable Land Imaging (SLI) program, which will be a joint effort by NASA and the USGS. Cook explained that this mission aims to greatly enhance Earth observation by launching three identical satellites, each equipped with advanced Visible Shortwave Infrared (VSWIR) and Thermal Infrared (TIR) instruments. He described how the Landsat Next constellation will improve the temporal revisit time to six days – a major advancement from the 16-day interval of L8 and L9. In order to achieve this revisit time improvement, each satellite will carry a Landsat Next Instrument Suite (LandIS) that will capture 21 VSWIR and five thermal infrared bands, which will have better spatial resolutions compared to previous Landsat missions. It will have ground sample distances of 10–20 m (33–66 ft) for visible, near infrared, and shortwave infrared bands and 60 m (197 ft) for atmospheric visible SWIR and thermal infrared bands.
Cook continued with details on LandIS, stating that Landsat Next will record 26 bands in total – 15 more than the currently active L8 and L9 missions. The LandIS will include refined versions of the 11 Landsat “heritage” bands to ensure continuity, five new bands similar to the ESA’s Copernicus Sentinel-2 mission for improved data integration, and 10 new spectral bands to meet evolving user needs and applications. Additionally, Landsat Next will have a water vapor band for atmospheric correction without needing data from other satellites. LandIS will collect all bands nearly simultaneously, reducing illumination variations between bands and aiding in cloud detection and the generation of multispectral surface reflectance and thermal emission products (e.g., evapotranspiration).
Cook said that Landsat Next is in Phase A of its mission life cycle. The current focus is on defining science requirements and converting them into specific hardware and system designs. He said that this phase is crucial for setting up the subsequent phases. Phase B will involve preliminary design and technology completion, and later phases leading to the final design, fabrication, and launch of the satellites. He ended by emphasizing that the introduction of a new reference system and a lower orbit will further enhance the satellites’ ability to capture high-quality data, leading to a significant advancement in Earth observation technology.
Harmonized Landsat–Sentinel Project Update
Junchang Ju [GSFC] discussed the Harmonized Landsat Sentinel-2 (HLS) project, which aims to integrate data from the L8, L9, Sentinel-2A, and Sentinel-2B satellites for more frequent and detailed Earth observations. Currently the MODIS climate modeling grid data is used for atmospheric correction – see Figure 4. The newer HLS version will use VIIRS-based water vapor and ozone fields instead of MODIS data for atmospheric correction using the land surface reflectance code. Ju explained how HLS adopts the Military Grid Reference System used by Sentinel-2. HLS V2.0 corrects a mistake in view angle normalization of earlier versions (V1.3 and V1.4). Atmospherically corrected data from Hyperion (an instrument on NASA’s Earth Observing–1 extended mission) is used to make bandpass adjustments. A temporally complete global HLS V2.0 dataset has been available since August 2023. He also highlighted the availability and access of HLS data through various platforms – e.g., EarthData and WorldView, in Amazon Web Services and the project’s future plans, such as enhancing vegetation indices, cloud mask improvements, and 10-m (33-ft) improved resolution product.
Figure 4. Sentinel-2B image over the Baltimore-Washington area on April 7, 2022 [left]. Example true color images of top of atmospheric reflectance and the corresponding HLS surface reflectance are shown [right]. The atmospheric ancillary data used in the surface reflectance derivation was from the MODIS Climate Modeling Grid (CMG) data before the transition to VIIRS was implemented. Figure Credit: Junchang Ju (GSFC) NISAR Update
Gerald Bawden [NASA HQ—NISAR Program Scientist] delivered a presentation about the NISAR mission, which is a collaborative effort between NASA and the ISRO. He explained that NISAR will be a dual-frequency Synthetic Aperture Radar satellite using 24-cm (9-in) L-band and 10-cm (4-in) S-band radar frequencies. This dual-frequency approach will enable high-resolution imaging of Earth’s surface, offering near-global land and ice coverage with a 12-day repeat cycle for interferometry and approximately 6-day coverage using both ascending and descending orbits. The mission’s goals include providing valuable data to understand and manage climate variability, carbon dynamics, and catastrophic events (e.g., earthquakes). Specific applications include monitoring deformation, measuring ice sheet velocities, observing sea-ice deformation, and assessing biomass and crop disturbances. Bawden discussed NISAR’s data products, which will include raw radar data (Level-0) and geocoded single-look complex images and multi-look interferograms (Level-2). He stated that these data products will be crucial for various research and practical applications, including ecological forecasting, wildfire management, resource management, and disaster response. NISAR’s data will be openly accessible to the global scientific community through the Alaska Satellite Facility Data Active Archive Center. Initially planned for early 2024, the NISAR launch has been delayed to 2025. Bawden reported that NISAR will undergo a three-month commissioning phase after launch – before starting science operations. He also emphasized NASA’s commitment to open science, with NISAR’s data processing software and algorithms being made available as open-source tools, accompanied by training resources to facilitate their use.
Land Surface Disturbance Alert Classification System Update
Matthew Hansen [UMD] focused on the Land Surface Disturbance Alert (DIST-ALERT) classification system, designed for near-real-time global vegetation extent and loss mapping. He described the DIST-ALERT system, which uses HLS data, combining inputs from L8, L9, Sentinel-2A, and -2B to achieve a high-revisit rate of approximately 2–3 days at a 30-m (98-ft) resolution. DIST-ALERT operates with a primary algorithm that tracks vegetation loss through time-series analysis of fractional vegetation cover (FVC) and a secondary algorithm that detects general spectral anomalies. The system integrates drone data from various biomes to build a k-nearest neighbors model that is applied globally to predict FVC at the HLS-pixel scale. Hansen explained that DIST-ALERT monitors disturbances by comparing current vegetation fraction against a seasonal baseline, capturing changes such as forest fires, logging, mining, urban expansion, drought, and land conversion. He concluded by highlighting some case studies, including analysis of forest fires in Quebec, Canada, logging in the Republic of Congo, and gold mining in Ghana. He also said that the team released an improved version (V1) in March 2024, following a provisional release (V0) that was operational from February 2023 to February 2024.
State of LCLUC Report
Chris Justice [UMD—LCLUC Program Scientist] provided comments on the current state of the LCLUC program, followed by an open discussion to gather feedback. He emphasized the need for PI’s to effectively communicate their work to the broader community and highlighted the recent LCLUC initiative to create policy-oriented briefs based on research results, demonstrating its relevance to the Earth Science to Action Strategy. Justice acknowledged that challenges lie ahead for the LCLUC program – particularly considering the anticipated resource constraints in the coming year. He noted that the program plans to strengthen its position by forming partnerships with other ESD program elements and increasing involvement across NASA Centers. The program is also emphasizing the use of advanced remote sensing technologies, AI, and deep-learning data analytics, to deliver more precise and actionable insights into land dynamics contributing to better decision-making and policy development in land management and environmental conservation.
Justice also suggested the need for better integration between different scientific fields (i.e., between LCLUC and climatology, climate mitigation, and adaptation) to enhance interdisciplinary research and collaboration. He cited the current program solicitation (e.g., ROSES 2024 A.2) as an example of this integration and the recent IDS solicitation in ROSES 2022 A.28. Justice reminded participants that the solicitation focuses on collaborating with AIST to develop Land Digital Twins that incorporate available remote sensing data time series as non-static boundary conditions in weather forecast and climate models. Improvements in model forecasts and climate simulations will highlight the importance of accounting for LCLUC in these models – advancing the goals of the IPCC.
Conclusion
Garik Gutman concluded the meeting by summarizing key points raised about data management strategies, educational outreach efforts, LCLUC research outside the U.S., and current and upcoming projects. He highlighted that the program requires PIs to provide metadata for data products generated under NASA-funded projects, ensuring these resources are freely and openly accessible to the scientific community. Gutman acknowledged the challenges of conducting research and fieldwork in foreign countries due to funding and, at times, security issues, but praised the PIs for their efforts to expand the program globally. He also noted the program’s outreach efforts, which include engaging PIs, collaborators, and interested parties through its website, newsletters, webinars, and policy briefs. LCLUC emphasizes the importance of effectively communicating research results and encourages researchers to share their findings via NASA’s Earth Sciences Research Results Portal to enhance visibility among leadership and communication teams.
Gutman ended his presentation by providing details about forthcoming meetings in the Philippines, South Korea, and Turkey, as well as workshops scheduled for 2024, which will involve various stakeholders in the LCLUC community and are vital for fostering collaboration and advancing the program’s goals. He concluded by recognizing the contributions of long-term supporters and collaborators, reaffirming the program’s ongoing commitment to advancing Earth observation and land-use science.
Overall, the 2024 LCLUC meeting was highly successful in fostering collaboration among researchers and providing valuable updates on recent developments in LCLUC research. The exchange of ideas, integration of new data products, and discussions on emerging science directions were particularly impactful, contributing to the advancement of the LCLUC program’s goals.
Krishna Vadrevu
NASA’s Marshall Space Flight Center
krishna.p.vadrevu@nasa.gov
Meghavi Prashnani
University of Maryland, College Park
meghavi@umd.edu
Christopher Justice
University of Maryland, College Park
cjustice@umd.edu
Garik Gutman
NASA Headquarters
ggutman@nasa.gov
Share
Details
Last Updated Jan 09, 2025 Related Terms
Earth Science View the full article
-
By NASA
Learn Home NASA eClips Educator Receives… Science Activation Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 2 min read
NASA eClips Educator Receives 2024 VAST Science Educator Specialist Award
On November 14, 2024, NASA eClips team member, Betsy McAllister, was recognized with the prestigious Virginia Association of Science Teachers (VAST) Science Educator Specialist Award at the 2024 VAST Annual Professional Development Institute. McAllister is an educator with Hampton City Schools in Virginia and Educator-in-Residence (EIR) at the National Institute of Aerospace’s Center for Integrative STEM Education (NIA-CISE).
Betsy earned this honor for her significant contributions to Science, Technology, Engineering, and Mathematics (STEM) education, having educated learners in formal and informal settings for over 30 years, 22 of those in the classroom. She taught 5th and 6th grade science, life and physical science, and gifted resource; she also served as a Science Teacher Specialist and STEM Teacher Specialist prior to her current position as EIR. In her EIR role with NIA, she is a key member of the NASA eClips team and works to bring NASA resources into the K-12 classroom while designing and aligning eClips resources with current curricula and pacing. She has been instrumental in creating strong collaborations between NASA and STEM-related organizations with Hampton City Schools and organizing community engagement experiences, such as their annual STEM Exploration Community Event.
In addition to her professional work with students, McAllister brings real-world learning opportunities to the public through volunteer roles as Commissioner with the Hampton Clean City Commission, a Peninsula Master Naturalist, and a Hampton Master Gardener. Congratulations, Betsy!
The NASA eClips project provides educators with standards-based videos, activities, and lessons to increase STEM literacy through the lens of NASA. It is supported by NASA under cooperative agreement award number NNX16AB91A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
Betsy McAllister was presented with the Virginia Association of Science Teacher’s Science Educator Specialist Award at the November 2024 VAST Conference. VAST Share
Details
Last Updated Jan 07, 2025 Editor NASA Science Editorial Team Related Terms
Science Activation Explore More
2 min read NASA Workshops Culturally Inclusive Planetary Engagement with Educators
Article
5 days ago
3 min read Astronomy Activation Ambassadors: A New Era
Article
1 week ago
3 min read Integrating Relevant Science Investigations into Migrant Children Education
Article
2 months ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
Skywatching Home Skywatching The Next Full Moon is the Wolf… Skywatching Home What’s Up Eclipses Explore the Night Sky Night Sky Network More Tips and Guides FAQ 27 Min Read The Next Full Moon is the Wolf Moon
The Moon sets over Homestead National Historic Park in Nebraska. Credits:
National Park Service/Homestead The next full Moon is the Wolf Moon; the Ice or Old Moon; the Moon after Yule; the start of Prayag Kumbh Mela; Shakambhari Purnima; Paush Purnima; the Thiruvathira, Thiruvathirai, or Arudhra Darisanam festival Moon; and Duruthu Poya.
The phases of the Moon for January 2025. NASA/JPL-Caltech The next full Moon will be Monday evening, Jan. 13, 2025, appearing opposite the Sun (in Earth-based longitude) at 5:27 p.m. EST. This will be Tuesday from the South Africa and Eastern European time zones eastward across the remainder of Africa, Europe, Asia, Australia, etc., to the International Date Line in the mid-Pacific. The Moon will appear full for about three days around this time, from Sunday evening (and possibly the last part of Sunday morning) into Wednesday morning. On the night of the full Moon, for most of the continental USA as well as parts of Africa, Canada, and Mexico, the Moon will pass in front of the planet Mars.
The Maine Farmers’ Almanac began publishing Native American names for full Moons in the 1930s. Over time these names have become widely known and used. According to this almanac, as the full Moon in January this is the Wolf Moon, from the packs of wolves heard howling outside the villages amid the cold and deep snows of winter.
European names for this Moon include the Ice Moon, the Old Moon, and (as the full Moon after the winter solstice) the Moon after Yule. Yule was a three to 12-day festival near the winter solstice in pre-Christian Europe. In the tenth century King Haakon I associated Yule with Christmas as part of the Christianization of Norway, and this association spread throughout Europe. The exact timing of this pre-Christian celebration is unclear. Some sources now associate Yule with the 12 days of Christmas, so that the Moon after Yule is after Twelfth Night on January 6. Other sources suggest that Yule is an old name for the month of January, so the Moon after Yule is in February. In the absence of more reliable historic information, I’m going with the full Moon after the winter solstice as the Moon after Yule.
This full Moon corresponds with the start of the 44-day festival Prayag Kumbh Mela, also known as Maha Kumbh. This Hindu pilgrimage and festival is held every 12 years in the Indian city of Prayagraj at the confluence of three rivers, the Ganges, the Yamuna, and the mythical Sarasvati. It is expected to draw around 400 million visitors. Similar Kumbh celebrations are held approximately every 12 years at the convergence of three rivers in three other Indian cities, Nashik (upcoming in 2027), Ujjain (in 2028), and Haridwar (in 2033).
In the Hindu calendar, this full Moon is Shakambhari Purnima, the last day in the 8-day Shakambari Navratri holiday that celebrates the goddess Shakambhari. In the Purnimanta tradition that ends months on the full Moon day, this full Moon is Paush Purnima, the last day of the Hindu month of Paush. The day after Paush Purnima is the start of the month of Magha, a period of austerity. Bathing in the holy waters of India is an important activity for both Shakambari Navratri and Magha.
This full Moon corresponds with the Thiruvathira, Thiruvathirai, or Arudhra Darisanam festival, celebrated by Hindus in the Indian states of Kerala and Tamil Nadu.
For the Buddhists of Sri Lanka, this is Duruthu Poya, which commemorates Siddhartha Gautama Buddha’s first visit to Sri Lanka.
In many lunar and lunisolar calendars the months change with the new Moon and full Moons fall in the middle of the lunar month. This full Moon is in the middle of the 12th and final month of the Chinese Year of the Rabbit. The new Moon on January 29 will be Chinese New Year, the start of the Year of the Snake. This full Moon is in the middle of Tevet in the Hebrew calendar and Rajab, the seventh month of the Islamic calendar. Rajab is one of the four sacred months in which warfare and fighting are forbidden.
As usual, the wearing of suitably celebratory celestial attire is encouraged in honor of the full Moon. Take care in the cold weather and take advantage of these early sunsets to enjoy and share the wonders of the night sky. And avoid starting any wars.
Here are the other celestial events between now and the full Moon after next, with times and angles based on the location of NASA Headquarters in Washington, D.C.:
As winter continues in the Northern Hemisphere, the daily periods of sunlight continue to lengthen. Our 24-hour clock is based on the average length of a day with the solar days near the solstices longer than those near the equinoxes. For Washington, D.C. and similar latitudes (I’ve not checked for other areas) the latest sunrise of the year (ignoring Daylight Saving Time) occurred on January 4. Monday, January 13 (the day of the full Moon), morning twilight will begin at 6:24 a.m. EST, sunrise will be at 7:26 a.m., solar noon will be at 12:17 p.m. when the Sun will reach its maximum altitude of 29.8 degrees, sunset will be at 5:08 p.m., and evening twilight will end at 6:11 p.m. By Wednesday, February 12 (the day of the full Moon after next), morning twilight will begin at 6:04 a.m., sunrise will be at 7:03 a.m., solar noon will be at 12:23 p.m. when the Sun will reach its maximum altitude of 37.7 degrees, sunset will be at 5:43 p.m., and evening twilight will end at 6:41 p.m.
This should be a good time for planet watching, especially with a backyard telescope. Venus, Jupiter, Mars, Saturn, and Uranus will all be in the evening sky. Brightest will be Venus, appearing in the southwestern sky. With a telescope you should be able to see it shift from half-full to a 29% illuminated crescent during this lunar cycle as it brightens and moves closer to the Earth.
Venus will reach its brightest for the year just after the full Moon after next. Second in brightness will be Jupiter in the eastern sky. With a telescope you should be able to see Jupiter’s four bright moons, Ganymede, Callisto, Europa, and Io, noticeably shifting positions in the course of an evening. Jupiter was at its closest and brightest in early December. Third in brightness will be Mars low in the east-northeastern sky. Mars will be at its closest and brightest for the year a few days after this full Moon. Fourth in brightness will be Saturn, appearing near Venus in the southwestern sky. With a telescope you should be able to see Saturn’s bright moon Titan and maybe its rings. The rings are appearing very thin and will be edge-on to the Earth in March 2025. We won’t get the “classic” view of Saturn showing off its rings until 2026. Saturn was at its closest and brightest in early September and will appear its closest to Venus (2.2 degrees apart) the evening of January 18. Fifth in brightness and technically bright enough to see without a telescope (if you are in a very dark location and your eyesight is better than mine) will be Uranus high in the southeastern sky. Uranus was at its closest and brightest in mid-November.
During this lunar cycle these planets will be rotating westward around the pole star Polaris (with Venus shifting more slowly) making them easier to see earlier in the evening, and friendlier for backyard stargazing, especially if you have young ones with earlier bedtimes.
Comets
As mentioned in my last posting, the sungrazing comet C/2024 G3 (ATLAS) will be passing very near the Sun on January 13. There is a chance that this comet will break up and vanish from view as it approaches the Sun, much as comet C/2024 S1 (ATLAS) did in October. In addition, its visual magnitude might not be bright enough to see in the daytime due to the glow of the nearby Sun. If it does not break up and is bright enough, Northern Hemisphere viewers will have the best viewing near its closest approach. For the Washington, D.C. area, it could be brightest the evening of January 12 before it sets on the southwestern horizon. You will need to find a distant object to block direct sunlight so you can safely look about 5 degrees to the upper right of the Sun. If the horizon is very clear, your best chance might be after sunset at 5:07 p.m. EST, but before the comet sets about 10 minutes later. Southern Hemisphere viewers will have the best viewing after closest approach, immediately after sunset from mid-January on (dimming each evening as it moves away from the Sun and the Earth). You may need binoculars or a telescope to see it, although comets are hard to predict.
Meteor Showers
Two minor meteor showers, the γ-Ursae Minorids (404 GUM) and α-Centaurids (102 ACE), will peak during this lunar cycle. The light of the waning Moon will interfere with the γ-Ursae Minorids peak on January 18. The α-Centaurids, only visible from the Southern Hemisphere, are expected to peak on February 8. In recent years the average peak has been 6 visible meteors per hour (under ideal conditions), although this shower showed bursts of 20 to 30 meteors per hour in 1974 and 1980. The best viewing conditions will likely be after the waxing gibbous Moon sets in the early mornings around the peak.
Evening Sky Highlights
On the evening of Monday, Jan. 13, 2025 (the evening of the full Moon), as twilight ends (at 6:11 p.m. EST), the rising Moon will be 13 degrees above the east-northeastern horizon with the bright planet Mars (the third brightest planet) 2 degrees to the lower left and the bright star Pollux (the brighter of the twin stars in the constellation Gemini, the twins) 3 degrees to the upper left of the Moon. The brightest planet visible will be Venus at 29 degrees above the southwestern horizon, with the planet Saturn (fourth brightest) 6 degrees to the upper left of Venus. The second brightest planet, Jupiter, will be 47 degrees above the eastern horizon. The bright star closest to overhead will be Capella at 50 degrees above the east-northeastern horizon. Capella is the 6th brightest star in our night sky and the brightest star in the constellation Auriga (the charioteer). Although we see Capella as a single star it is actually four stars (two pairs of stars orbiting each other). Capella is about 43 light years from us.
As this lunar cycle progresses, the planets and the background of stars will appear to rotate westward around the pole star Polaris each evening, with Venus initially shifting the other direction. Mars will be at its closest and brightest on January 15. Venus and Saturn will appear closest to each other on January 18. Mars and Pollux will appear nearest each other on January 22 and 23. Venus will appear at its highest above the horizon (as twilight ends) on January 27, after which it will start shifting toward the horizon again. Jupiter and Aldebaran will appear at their closest on January 31. The waxing Moon will pass by Saturn on January 31; Venus on February 1; the Pleiades star cluster on February 5; and Mars and Pollux on February 10.
By the evening of Wednesday, February 12 (the evening of the full Moon after next), as twilight ends (at 6:41 p.m. EST), the rising Moon will be 7 degrees above the east-northeastern horizon with the bright star Regulus 2 degrees to the right. The brightest planet in the sky will be Venus at 28 degrees above the west-southwestern horizon, appearing as a crescent through a telescope. Next in brightness will be Jupiter at 71 degrees above the south-southeastern horizon. Third in brightness will be Mars at 48 degrees above the eastern horizon. Saturn will be 11 degrees above the west-southwestern horizon. Uranus, on the edge of what is visible under extremely clear, dark skies, will be 68 degrees above the south-southwestern horizon. The bright star closest to overhead will still be Capella at 75 degrees above the northeastern horizon.
Also high in the sky will be the constellation Orion, easily identifiable because of the three stars that form Orion’s Belt. This time of year, we see many bright stars in the sky at evening twilight, with bright stars scattered from the south-southeast toward the northwest. We see more stars in this direction because we are looking toward the Local Arm of our home galaxy (also called the Orion Arm, Orion-Cygnus Arm, or Orion Bridge). This arm is about 3,500 light years across and 10,000 light years long. Some of the bright stars we see from this arm are the three stars of Orion’s Belt, as well as Rigel (860 light years from Earth), Betelgeuse (548 light years), Polaris (about 400 light years), and Deneb (about 2,600 light years).
Facing toward the south from the northern hemisphere, to the upper left of Orion’s Belt is the bright star Betelgeuse (be careful not to say this name three times). About the same distance to the lower right is the bright star Rigel. Orion’s belt appears to point down and to the left about seven belt lengths to the bright star Sirius, the brightest star in the night sky. Below Sirius is the bright star Adara. To the upper right of Orion’s Belt (at about the same distance from Orion as Sirius) is the bright star Aldebaran. Nearly overhead is the bright star Capella. To the left (east) of Betelgeuse is the bright star Procyon. The two stars above Procyon are Castor and Pollux, the twin stars of the constellation Gemini (Pollux is the brighter of the two). The bright star Regulus appears farther to the left (east) of Pollux near the eastern horizon. Very few places on the East Coast are dark enough to see the Milky Way (our home galaxy), but if you could see it, it would appear to stretch overhead from the southeast to the northwest. Since we are seeing our galaxy from the inside, the combined light from its 100 billion to 400 billion stars make it appear as a band surrounding the Earth.
Morning Sky Highlights
On the morning of Monday, Jan. 13, 2025 (the morning of the full Moon), as twilight begins (at 6:23 a.m. EST), the setting full Moon will be 11 degrees above the west-northwestern horizon. This will be the last morning the planet Mercury will rise before morning twilight begins, although it will be bright enough to see in the glow of dawn after it rises for another week or so. This will leave Mars at 18 degrees above the west-northwestern horizon as the only planet in the sky. The bright star appearing closest to overhead will be Arcturus at 69 degrees above the south-southeastern horizon. Arcturus is the brightest star in the constellation Boötes (the herdsman or plowman) and the 4th brightest star in our night sky. It is 36.7 light years from us. While it has about the same mass as our Sun, it is about 2.6 billion years older and has used up its core hydrogen, becoming a red giant 25 times the size and 170 times the brightness of our Sun. One way to identify Arcturus in the night sky is to start at the Big Dipper, then follow the arc of the dipper’s handle as it “arcs toward Arcturus.”
As this lunar cycle progresses Mars and the background of stars will appear to rotate westward around the pole star Polaris by about 1 degree each morning. The waning Moon will appear near Mars and Pollux on January 13 and 14, Regulus on January 16, Spica on January 21, Antares on January 24 and 25, and (rising after morning twilight begins) Mercury on January 28. January 22 will be the last morning the planet Mercury will be above the horizon 30 minutes before sunrise. Mars and Pollux will be near their closest to each other the morning of January 23. February 4 will be the last morning the planet Mars will be above the northwestern horizon as morning twilight begins. The waxing Moon will appear near Pollux on February 9 (setting before twilight begins) and 10.
By the morning of Wednesday, February 12 (the morning of the full Moon after next), as twilight begins (at 6:04 a.m. EST), the setting full Moon will be 13 degrees above the western horizon. No planets will appear in the sky. The bright star appearing closest to overhead will still be Arcturus at 65 degrees above the southeastern horizon.
Detailed Daily Guide
Here is a day-by-day listing of celestial events between now and the full Moon on Feb. 12, 2025. The times and angles are based on the location of NASA Headquarters in Washington, D.C., and some of these details may differ for where you are (I use parentheses to indicate times specific to the D.C. area). If your latitude is significantly different than 39 degrees north (and especially for my Southern Hemisphere readers), I recommend using an astronomy app set for your location or a star-watching guide from a local observatory, news outlet, or astronomy club.
Tuesday evening, January 7 At 7:07 p.m. EST, the Moon will be at perigee, its closest to the Earth for this orbit.
Thursday evening, January 9 The waxing gibbous Moon will pass in front of the Pleiades star cluster. This may be viewed best with binoculars, as the brightness of the Moon will make it hard to see the stars in this star cluster. As evening twilight ends at 6:07 p.m. EST, the Pleiades will appear 1 degree to the lower left of the full Moon. Over the next few hours, including as the Moon reaches its highest for the night at 8:37 p.m., the Moon will pass in front of the Pleiades, blocking many of these stars from view. By about midnight the Pleiades will appear about 1 degree below the Moon, and the Moon and the Pleiades will separate as Friday morning progresses.
Also on Thursday night, January 9, the planet Venus will reach its greatest angular separation from the Sun as seen from the Earth for this apparition (called greatest elongation). Because the angle between the line from the Sun to Venus and the line of the horizon changes with the seasons, the date when Venus and the Sun appear farthest apart as seen from Earth is not always the same as when it appears highest above the west-southwestern horizon as evening twilight ends, which occurs on January 27.
Friday evening, January 10 The bright planet Jupiter will appear near the waxing gibbous Moon. As evening twilight ends at 6:08 p.m. EST, Jupiter will be 5 degrees to the lower right. As the Moon reaches its highest for the night at 9:37 p.m., Jupiter will be 6 degrees below the Moon. The pair will continue to separate until Jupiter sets Saturday morning at 4:45 a.m.
Sunday afternoon, January 12 There is a slight chance that the sungrazing comet, C/2024 G3 (ATLAS) might be visible near the setting Sun. Most likely, this comet will not be bright enough to see in the daytime or will break up and vanish from view like comet C/2024 S1 (ATLAS) did in October. The odds are low, but if the sky is clear, find an object to block direct sunlight (the farther away the object the better) so you can safely look about 5 degrees to the upper right of the Sun. If the west-southwestern horizon is clear, your best chance might be after sunset at 5:07 p.m. EST, but before the comet sets about 10 minutes later. This will only be visible from the Northern Hemisphere. Southern Hemisphere viewers may be able to see this comet from mid-January on immediately after sunset (dimming each evening as it moves away from us).
Monday morning, January 13 This is the morning of the full Moon. It will be the last morning Mercury will rise before morning twilight begins, although it will be bright enough to see in the glow of dawn after it rises for another week or so.
The Moon will be full Monday evening at 5:27 p.m. EST. This will be on Tuesday from the South Africa and Eastern European time zones eastward across the rest of Africa, Europe, Asia, Australia, etc., to the International Date Line in the mid-Pacific. The Moon will appear full for about three days around this time, from Sunday evening (and possibly the last part of Sunday morning) into Wednesday morning.
On Monday night the full Moon will appear near and pass in front of the bright planet Mars, with the bright star Pollux above the pair. As evening twilight ends at 6:11 p.m. EST, the three will form a triangle, with Mars 2 degrees to the lower left and Pollux 3 degrees to the upper left of the Moon. For most of the continental USA as well as parts of Africa, Canada, and Mexico, the Moon will pass in front of Mars. Times will vary for other locations, but for NASA Headquarters in Washington, D.C., Mars will vanish behind the bottom of the Moon at about 9:16 p.m. and reappear from behind the upper right of the Moon at about 10:31 p.m. By the time the Moon reaches its highest for the night early on Tuesday morning at 12:37 a.m., Mars will be 1 degree to the right of the Moon and Pollux 5 degrees to the upper right. As morning twilight begins at 6:23 a.m., Mars will be 4 degrees and Pollux 8 degrees to the lower right of the Moon.
Wednesday night January 15 The planet Mars will be at opposition, so called because it will be opposite the Earth from the Sun, effectively a “full” Mars. Near opposition Mars will be at its closest and brightest for the year. On Wednesday night, as evening twilight ends at 6:13 p.m. EST, Mars will be 14 degrees above the east-northeastern horizon. Mars will reach its highest in the sky early Thursday morning at 12:21 a.m., and will be 15 degrees above the west-northwestern horizon as morning twilight begins at 6:23 a.m. Only planets that orbit farther from the Sun than the Earth can be seen at opposition from the Earth.
Wednesday night into Thursday morning, January 15 to 16 The bright star Regulus will appear near the waning gibbous Moon. As Regulus rises on the east-northeastern horizon at 7:52 p.m. EST, it will be more than 8 degrees below the Moon. By the time the Moon reaches its highest for the night on Thursday morning at 2:17 a.m. Regulus will be 5.5 degrees to the lower left of the Moon. As morning twilight begins at 6:23 a.m. Regulus will be 4 degrees to the left of the Moon.
Saturday evening, January 18 Venus and Saturn will appear nearest to each other. As evening twilight ends at 6:15 p.m. EST, Venus will be 30 degrees above the southwestern horizon with Saturn 2.2 degrees to the lower left. Saturn will set first on the western horizon almost 3 hours later at 9:04 p.m.
Monday night, January 20 At 11:53 p.m. EST, the Moon will be at apogee, its farthest from the Earth for this orbit.
Tuesday morning, January 21 The bright star Spica will appear near the waning gibbous Moon. As the Moon rises on the east-southeastern horizon at 12:11 a.m. EST Spica will be 1 degree above the Moon. By the time the Moon reaches its highest for the night at 5:41 a.m., Spica will be 3.5 degrees to the upper right, with morning twilight beginning 40 minutes later at 6:21 a.m. For parts of Western Africa and the Atlantic Ocean the Moon will pass in front of Spica.
Tuesday afternoon, the waning Moon will appear half-full as it reaches its last quarter at 3:31 p.m. EST (when we can’t see it).
Wednesday morning, January 22 This will be the last morning Mercury will be above the horizon 30 minutes before sunrise, an approximation of the last morning it might be visible in the glow of dawn.
Throughout this lunar cycle, Mars and the bright star Pollux will appear near each other, with Wednesday night into Thursday morning and Thursday night into Friday morning (January 22, 23, and 24) the nights when they will be at their closest, 2.5 degrees apart. They will be up all night for both nights, with Mars at its highest on Wednesday night at 11:41 p.m. EST, and Thursday night at 11:36 p.m.
Friday morning, January 24 The bright star Antares will appear to the lower left of the waning crescent Moon. As Antares rises on the southeastern horizon at 3:54 a.m. EST, it will be 8 degrees from the Moon. By the time morning twilight begins less than 2.5 hours later at 6:19 a.m., Antares will be 6.5 degrees from the Moon. For part of the Indian Ocean the Moon will actually pass in front of Pollux.
Saturday morning, January 25 The Moon will have shifted to the other side of Antares. As the Moon rises at 4:20 a.m. EST, Antares will be 6 degrees to the upper right of the Moon. By the time morning twilight begins 2 hours later at 6:19 a.m., Antares will be 7 degrees from the Moon.
Monday evening, January 27 Venus will be at its highest above the west-southwestern horizon (31 degrees) as evening twilight ends at 6:25 p.m. EST, appearing as a 41% illuminated crescent through a telescope.
Wednesday morning, January 29 At 7:36 a.m. EST there will be a new Moon, when the Moon passes between the Earth and the Sun, and the Moon will not be visible from the Earth. The day of, or the day after, the New Moon marks the start of the new month for most lunisolar calendars. The first month of the Chinese calendar starts on Wednesday, January 29, making this Chinese New Year, the start of the Year of the Snake! Chinese New Year and related celebrations throughout much of Asia and in areas with significant Chinese populations celebrate the end of winter and start of spring. Traditional festivities start on the eve of Chinese New Year and continue until the Lantern Festival on the 15th day of the first lunar month.
Sundown on Wednesday, January 29 This marks the start of Shevat in the Hebrew calendar.
Sundown on Thursday, January 30 In the Islamic calendar, the months traditionally start with the first sighting of the waxing crescent Moon. Many Muslim communities now follow the Umm al-Qura Calendar of Saudi Arabia, which uses astronomical calculations to start months in a more predictable way. Using this calendar, sundown on Thursday, January 30, will probably mark the beginning of Shaʿbān, the eighth month of the Islamic year and the month before Ramadan.
Friday evening, January 31 Saturn will appear 4 degrees to the upper left of the waxing crescent Moon. The Moon will be 17 degrees above the west-southwestern horizon as evening twilight ends at 6:29 p.m. EST, and will set on the western horizon 99 minutes later at 8:08 p.m. For part of Asia the Moon will actually pass in front of Saturn.
Throughout this lunar cycle the bright star Aldebaran will appear below the bright planet Jupiter, with Friday, January 31 the evening they appear at their closest, about 5 degrees apart. As evening twilight ends at 6:29 p.m. EST, Jupiter will be 65 degrees above the southeastern horizon with Aldebaran to the lower right. Jupiter will reach its highest for the night, 73 degrees above the southern horizon at 8:01 p.m., with Aldebaran below Jupiter. As Aldebaran sets on the west-northwestern horizon almost 7 hours after that at 2:56 a.m. it will be to the lower left of the Moon.
Saturday evening, February 1 Venus will appear near the waxing crescent Moon. The Moon will be 30 degrees above the west-southwestern horizon as evening twilight ends at 6:30 p.m. EST, with Venus 2.5 degrees to the upper right. Venus will be 2.5 degrees to the lower right as it sets first on the western horizon 2.75 hours later at 9:15 p.m.
Saturday night, at 9:38 p.m. EST, the Moon will be at perigee, its closest to the Earth for this orbit.
Saturday also is Imbolc or Imbolg, and the next day (Sunday, February 2) is Candlemas or Groundhog’s Day. We currently divide the year into four seasons based upon the solstices and equinoxes, with spring starting on the vernal equinox. This approximates winter as the quarter of the year with the coldest temperatures. Much of pre-Christian northern Europe celebrated “cross-quarter days” halfway between the solstices and equinoxes, dividing the seasons on these days. Using this definition, winter was the quarter of the year with the shortest daily periods of daylight, and spring started on Imbolc (the middle of our winter).
The tradition in some European countries was to leave Christmas decorations up until February 1st, the eve of Candlemas, and it was considered bad luck to leave decorations up past this date. Robert Herrick (1591-1674) starts his poem “Ceremonies for Candlemas Eve” with “Down with the rosemary and bays, down with the mistletoe; Instead of holly, now up-raise the greener box (for show).”
We have a tradition in the United States that winter will end on Groundhog Day if the groundhog sees its shadow. If not, winter will last six weeks more (ending around the time of the spring equinox). Groundhog Day appears to tie back to European lore about whether or not badgers, wolves, or bears (instead of groundhogs) see their shadows. Many believe that these Groundhog Day and Candlemas traditions tie back to these earlier celebrations for the start of spring. It seems plausible to me that it was confusing to have two competing dates for the end of winter. Perhaps it was best to let a natural event such as an animal’s shadow decide which definition to use, rather than arguing with your neighbors for the next six weeks.
Tuesday morning, February 4 This will be the last morning Mars will be above the northwestern horizon as morning twilight begins.
Wednesday morning, February 5 The Moon will appear half-full as it reaches its first quarter at 3:02 a.m. EST (when we can’t see it).
Wednesday evening the waxing gibbous Moon will appear near the Pleiades star cluster. As evening twilight ends at 6:34 p.m. EST, this star cluster will be 5 degrees to the upper left of the Moon. The Pleiades will shift closer toward the Moon until the Moon sets on the west-northwestern horizon less than 8 hours later at 2:16 a.m. Some North American locations farther west will actually see the Moon pass in front of some of the stars in the Pleiades.
Sunday morning, February 9 Mars will appear to the upper left of the waxing gibbous Moon. In the early morning at about 2 a.m. EST, Mars will be 8 degrees from the Moon. By the time the Moon sets on the northwestern horizon at 5:58 a.m., Mars will have shifted to 6 degrees from the Moon. For parts of Asia and Northern Europe the Moon will pass in front of Mars.
Also Sunday morning, Mercury will be passing on the far side of the Sun as seen from the Earth, called superior conjunction. Because Mercury orbits inside of the orbit of Earth it will be shifting from the morning sky to the evening sky and will begin emerging from the glow of dusk on the west-southwestern horizon after about February 17 (depending upon viewing conditions).
Sunday evening into Monday morning, February 9 to 10 The waxing gibbous Moon will have shifted to the other side of Mars (having passed in front of Mars in the afternoon when we could not see them). As evening twilight ends at 6:38 p.m. EST, the Moon will be between Mars and the bright star Pollux, with Mars 3 degrees to the upper right and Pollux 3 degrees to the lower left. By the time the Moon reaches its highest for the night at 10:27 p.m., Mars will be 4.5 degrees to the right of the Moon and Pollux 2.5 degrees to the upper left of the Moon. Mars will set first on the northwestern horizon Monday morning at 5:44 a.m. just 22 minutes before morning twilight begins at 6:06 a.m.
Wednesday morning, February 12 The full Moon after next will be at 8:53 a.m. EST, with the bright star Regulus nearby. This will be on Thursday morning from Australian Central Time eastward to the International Date Line in the mid-Pacific. The Moon will appear full for about three days around this time, from Monday night into early Thursday evening.
Keep Exploring Discover More Topics From NASA
Skywatching
Solar System Exploration
Planets
Asteroids, Comets & Meteors
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.