Jump to content

TOBIAS: Tethered Observatory for Balloon-based Imaging and Atmospheric Sampling


Recommended Posts

  • Publishers
Posted

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of TOBIAS: Tethered Observatory for Balloon-based Imaging and Atmospheric Sampling concept.
Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of TOBIAS: Tethered Observatory for Balloon-based Imaging and Atmospheric Sampling concept.
NASA/Ben Hockman

Ben Hockman
NASA Jet Propulsion Laboratory

A basketball-sized towbody containing a camera, atmospheric sampling instruments, and support hardware is suspended on a multi-kilometer tether from a high-altitude balloon in the Venusian atmosphere, allowing it to peer beneath the dense cloud layer and image the surface at high resolution. The towbody harvests energy from the differential wind shear via an onboard wind turbine in order to power onboard instruments and active cooling system. Aerodynamic surfaces interacting with the relative wind shears of ~10 m/s allow the towbody to maintain stable pointing for imaging. This Phase I study will focus on four key feasibility aspects of the towbody system: (1) the tether system, including tether design, deployment system, and drag due to atmospheric wind shear, (2) towbody attitude stability, including its aerodynamic design and vibration suppression, (3) the power and thermal system for surviving the harsh Venusian atmosphere, and (4) the mission architecture and systems engineering aspects, particularly communications, towbody deployment, gondola interfaces, and the concept of operations. This “Tethered Observatory for Balloon-based Imaging and Atmospheric Sampling (TOBIAS)” would transform our understanding of the nature and evolution of Venus by enabling high resolution and spatial coverage nighttime IR imaging of surface geology, including active and past volcanism.

2025 Selections

Share

Details

Last Updated
Jan 10, 2025
Editor
Loura Hall

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 5 Min Read 20-Year Hubble Study of Uranus Yields New Atmospheric Insights
      The image columns show the change of Uranus for the four years that STIS observed Uranus across a 20-year period. Over that span of time, the researchers watched the seasons of Uranus as the south polar region darkened going into winter shadow while the north polar region brightened as northern summer approaches. Credits:
      NASA, ESA, Erich Karkoschka (LPL) The ice-giant planet Uranus, which travels around the Sun tipped on its side, is a weird and mysterious world. Now, in an unprecedented study spanning two decades, researchers using NASA’s Hubble Space Telescope have uncovered new insights into the planet’s atmospheric composition and dynamics. This was possible only because of Hubble’s sharp resolution, spectral capabilities, and longevity. 
      The team’s results will help astronomers to better understand how the atmosphere of Uranus works and responds to changing sunlight. These long-term observations provide valuable data for understanding the atmospheric dynamics of this distant ice giant, which can serve as a proxy for studying exoplanets of similar size and composition.
      When Voyager 2 flew past Uranus in 1986, it provided a close-up snapshot of the sideways planet. What it saw resembled a bland, blue-green billiard ball. By comparison, Hubble chronicled a 20-year story of seasonal changes from 2002 to 2022. Over that period, a team led by Erich Karkoschka of the University of Arizona, and Larry Sromovsky and Pat Fry from the University of Wisconsin used the same Hubble instrument, STIS (the Space Telescope Imaging Spectrograph), to paint an accurate picture of the atmospheric structure of Uranus. 
      Uranus’ atmosphere is mostly hydrogen and helium, with a small amount of methane and traces of water and ammonia. The methane gives Uranus its cyan color by absorbing the red wavelengths of sunlight.
      The Hubble team observed Uranus four times in the 20-year period: in 2002, 2012, 2015, and 2022. They found that, unlike conditions on the gas giants Saturn and Jupiter, methane is not uniformly distributed across Uranus. Instead, it is strongly depleted near the poles. This depletion remained relatively constant over the two decades. However, the aerosol and haze structure changed dramatically, brightening significantly in the northern polar region as the planet approaches its northern summer solstice in 2030.
      The image columns show the change of Uranus for the four years that STIS observed Uranus across a 20-year period. Over that span of time, the researchers watched the seasons of Uranus as the south polar region darkened going into winter shadow while the north polar region brightened as northern summer approaches. NASA, ESA, Erich Karkoschka (LPL) Uranus takes a little over 84 Earth years to complete a single orbit of the Sun. So, over two decades, the Hubble team has only seen mostly northern spring as the Sun moves from shining directly over Uranus’ equator toward shining almost directly over its north pole in 2030. Hubble observations suggest complex atmospheric circulation patterns on Uranus during this period. The data that are most sensitive to the methane distribution indicate a downwelling in the polar regions and upwelling in other regions. 
      The team analyzed their results in several ways. The image columns show the change of Uranus for the four years that STIS observed Uranus across a 20-year period. Over that span of time, the researchers watched the seasons of Uranus as the south polar region (left) darkened going into winter shadow while the north polar region (right) brightened as it began to come into a more direct view as northern summer approaches.
      The top row, in visible light, shows how the color of Uranus appears to the human eye as seen through even an amateur telescope. 
      In the second row, the false-color image of the planet is assembled from visible and near-infrared light observations. The color and brightness correspond to the amounts of methane and aerosols. Both of these quantities could not be distinguished before Hubble’s STIS was first aimed at Uranus in 2002. Generally, green areas indicate less methane than blue areas, and red areas show no methane. The red areas are at the limb, where the stratosphere of Uranus is almost completely devoid of methane. 
      The two bottom rows show the latitude structure of aerosols and methane inferred from 1,000 different wavelengths (colors) from visible to near infrared. In the third row, bright areas indicate cloudier conditions, while the dark areas represent clearer conditions. In the fourth row, bright areas indicate depleted methane, while dark areas show the full amount of methane. 
      At middle and low latitudes, aerosols and methane depletion have their own latitudinal structure that mostly did not change much over the two decades of observation.  However, in the polar regions, aerosols and methane depletion behave very differently. 
      In the third row, the aerosols near the north pole display a dramatic increase, showing up as very dark during early northern spring, turning very bright in recent years. Aerosols also seem to disappear at the left limb as the solar radiation disappeared. This is evidence that solar radiation changes the aerosol haze in the atmosphere of Uranus. On the other hand, methane depletion seems to stay quite high in both polar regions throughout the observing period. 
      Astronomers will continue to observe Uranus as the planet approaches northern summer.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Related Images & Videos
      20 Years of Uranus Observations





      Share








      Details
      Last Updated Mar 31, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center
      Contact Media Claire Andreoli
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov
      Ann Jenkins
      Space Telescope Science Institute, Baltimore, Maryland
      Ray Villard
      Space Telescope Science Institute, Baltimore, Maryland

      Related Terms
      Hubble Space Telescope Astrophysics Division Goddard Space Flight Center Planetary Environments & Atmospheres Planetary Science Planets The Solar System Uranus
      View the full article
    • By NASA
      4 min read
      NASA Atmospheric Wave-Studying Mission Releases Data from First 3,000 Orbits
      Following the 3,000th orbit of NASA’s AWE (Atmospheric Waves Experiment) aboard the International Space Station, researchers publicly released the mission’s first trove of scientific data, crucial to investigate how and why subtle changes in Earth’s atmosphere cause disturbances, as well as how these atmospheric disturbances impact technological systems on the ground and in space.
      “We’ve released the first 3,000 orbits of data collected by the AWE instrument in space and transmitted back to Earth,” said Ludger Scherliess, principal investigator for the mission and physics professor at Utah State University. “This is a view of atmospheric gravity waves never captured before.”
      Available online, the data release contains more than five million individual images of nighttime airglow and atmospheric gravity wave observations collected by the instrument’s four cameras, as well as derived temperature and airglow intensity swaths of the ambient air and the waves.
      This image shows AWE data combined from two of the instrument’s passes over the United States. The red and orange wave-structures show increases in brightness (or radiance) in infrared light produced by airglow in Earth’s atmosphere. NASA/AWE/Ludger Scherliess “AWE is providing incredible images and data to further understand what we only first observed less than a decade ago,” said Esayas Shume, AWE program scientist at NASA Headquarters in Washington. “We are thrilled to share this influential data set with the larger scientific community and look forward to what will be discovered.”
      Members of the AWE science team gather in the mission control room at Utah State University to view data collected by the mapping instrument mounted on the outside of the International Space Station. SDL/Allison Bills Atmospheric gravity waves occur naturally in Earth’s atmosphere and are formed by Earth’s weather and topography. Scientists have studied the enigmatic phenomena for years, but mainly from a few select sites on Earth’s surface.
      “With data from AWE, we can now begin near-global measurements and studies of the waves and their energy and momentum on scales from tens to hundreds and even thousands of kilometers,” Scherliess said. “This opens a whole new chapter in this field of research.”  
      Data from AWE will also provide insight into how terrestrial and space weather interactions affect satellite communications, and navigation, and tracking.
      “We’ve become very dependent on satellites for applications we use every day, including GPS navigation,” Scherliess said. “AWE is an attempt to bring science about atmospheric gravity waves into focus, and to use that information to better predict space weather that can disrupt satellite communications. We will work closely with our collaborators to better understand how these observed gravity waves impact space weather.”
      AWE’s principal investigator, Ludger Scherliess, briefs collaborators of initial analysis of early AWE data. Information from the NASA-funded mission is helping scientists better understand how weather on Earth affects weather in space. SDL/Allison Bills The tuba-shaped AWE instrument, known as the Advanced Mesospheric Temperature Mapper or AMTM, consists of four identical telescopes. It is mounted to the exterior of the International Space Station, where it has a view of Earth.
      As the space station orbits Earth, the AMTM’s telescopes capture 7,000-mile-long swaths of the planet’s surface, recording images of atmospheric gravity waves as they move from the lower atmosphere into space. The AMTM measures and records the brightness of light at specific wavelengths, which can be used to create air and wave temperature maps. These maps can reveal the energy of these waves and how they are moving through the atmosphere.
      To analyze the data and make it publicly available, AWE researchers and students at USU developed new software to tackle challenges that had never been encountered before.
      “Reflections from clouds and the ground can obscure some of the images, and we want to make sure the data provide clear, precise images of the power transported by the waves,” Scherliess said. “We also need to make sure the images coming from the four separate AWE telescopes on the mapper are aligned correctly. Further, we need to ensure stray light reflections coming off the solar panels of the space station, along with moonlight and city lights, are not masking the observations.”
      As the scientists move forward with the mission, they’ll investigate how gravity wave activity changes with seasons around the globe. Scherliess looks forward to seeing how the global science community will use the AWE observations.
      “Data collected through this mission provides unprecedented insight into the role of weather on the ground on space weather,” he said.
      AWE is led by Utah State University in Logan, Utah, and it is managed by the Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Utah State University’s Space Dynamics Laboratory built the AWE instrument and provides the mission operations center.
      By Mary-Ann Muffoletto
      Utah State University, Logan, UT
      NASA Media Contact: Sarah Frazier
      Share








      Details
      Last Updated Mar 14, 2025 Related Terms
      Heliophysics Heliophysics Division Ionosphere Mesosphere Science Mission Directorate The Sun Uncategorized Explore More
      2 min read Hubble Sees a Spiral and a Star


      Article


      7 hours ago
      5 min read NASA’s Record-Shattering, Theory-Breaking MMS Mission Turns 10


      Article


      2 days ago
      4 min read Discovery Alert: ‘Super-Earth’ Swings from Super-Heated to Super-Chill


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By European Space Agency
      The second of the Meteosat Third Generation (MTG) satellites and the first instrument for the Copernicus Sentinel-4 mission are fully integrated and, having completed their functional and environmental tests, they are now ready to embark on their journey to the US for launch this summer.
      View the full article
    • By NASA
      5 min read
      Ultra-low-noise Infrared Detectors for Exoplanet Imaging
      A linear-mode avalanche photodiode array in the test dewar. The detector is the dark square in the center. Michael Bottom, University of Hawai’i One of the ultimate goals in astrophysics is the discovery of Earth-like planets that are capable of hosting life. While thousands of planets have been discovered around other stars, the vast majority of these detections have been made via indirect methods, that is, by detecting the effect of the planet on the star’s light, rather than detecting the planet’s light directly. For example, when a planet passes in front of its host star, the brightness of the star decreases slightly.
      However, indirect methods do not allow for characterization of the planet itself, including its temperature, pressure, gravity, and atmospheric composition. Planetary atmospheres may include “biosignature” gases like oxygen, water vapor, carbon dioxide, etc., which are known to be key ingredients needed to support life as we know it. As such, direct imaging of a planet and characterization of its atmosphere are key to understanding its potential habitability.
      But the technical challenges involved in imaging Earth-like extrasolar planets are extreme. First such planets are detected only by observing light they reflect from their parent star, and so they typically appear fainter than the stars they orbit by factors of about 10 billion. Furthermore, at the cosmic distances involved, the planets appear right next to the stars. A popular expression is that exoplanet imaging is like trying to detect a firefly three feet from a searchlight from a distance of 300 miles.
      Tremendous effort has gone into developing starlight suppression technologies to block the bright glare of the star, but detecting the light of the planet is challenging in its own right, as planets are incredibly faint. One way to quantify the faintness of planetary light is to understand the photon flux rate. A photon is an indivisible particle of light, that is, the minimum detectable amount of light. On a sunny day, approximately 10 thousand trillion photons enter your eye every second. The rate of photons entering your eye from an Earth-like exoplanet around a nearby star would be around 10 to 100 per year. Telescopes with large mirrors can help collect as much of this light as possible, but ultra-sensitive detectors are also needed, particularly for infrared light, where the biosignature gases have their strongest effects. Unfortunately, state-of-the-art infrared detectors are far too noisy to detect the low level of light emitted from exoplanets.
      With support from NASA’s Astrophysics Division and industrial partners, researchers at the University of Hawai’i are developing a promising detector technology to meet these stringent sensitivity requirements. These detectors, known as avalanche photodiode arrays, are constructed out of the same semiconductor material as conventional infrared sensors. However, these new sensors employ an extra “avalanche” layer that takes the signal from a single photon and multiplies it, much like an avalanche can start with a single snowball and quickly grow it to the size of a boulder. This signal amplification occurs before any noise from the detector is introduced, so the effective noise is proportionally reduced. However, at high avalanche levels, photodiodes start to behave badly, with noise exponentially increasing, which negates any benefits of the signal amplification. Late University of Hawai’i faculty member Donald Hall, who was a key figure in driving technology for infrared astronomy, realized the potential use of avalanche photodiodes for ultra-low-noise infrared astronomy with some modifications to the material properties.
      University of Hawai’i team members with cryogenic dewar used to test the sensors. From left to right, Angelu Ramos, Michael Bottom, Shane Jacobson, Charles-Antoine Claveau. Michael Bottom, University of Hawai’i The most recent sensors benefit from a new design including a graded semiconductor bandgap that allows for excellent noise performance at moderate amplification, a mesa pixel geometry to reduce electronic crosstalk, and a read-out integrated circuit to allow for short readout times. “It was actually challenging figuring out just how sensitive these detectors are,” said Michael Bottom, associate professor at the University of Hawai’i and lead of development effort. “Our ‘light-tight’ test chamber, which was designed to evaluate the infrared sensors on the James Webb Space Telescope, was supposed to be completely dark. But when we put these avalanche photodiodes in the chamber, we started seeing light leaks at the level of a photon an hour, which you would never be able to detect using the previous generation of sensors.”
      The new designs have a format of one megapixel, more than ten times larger than the previous iteration of sensors, and circuitry that allows for tracking and subtracting any electronic drifts. Additionally, the pixel size and control electronics are such that these new sensors could be drop-in replacements for the most common infrared sensors used on the ground, which would give new capabilities to existing instruments.
      Image of the Palomar-2 globular cluster located in the constellation of Auriga, taken with the linear-mode avalanche photodiode arrays, taken from the first on-sky testing of the sensors using the University of Hawai’i’s 2.2 meter telescope. Michael Bottom, University of Hawai’i Last year, the team took the first on-sky images from the detectors, using the University of Hawai’i’s 2.2-meter telescope. “It was impressive to see the avalanche process on sky. When we turned up the gain, we could see more stars appear,” said Guillaume Huber, a graduate student working on the project. “The on-sky demonstration was important to prove the detectors could perform well in an operational environment,” added Michael Bottom.
      According to the research team, while the current sensors are a major step forward, the megapixel format is still too small for many science applications, particularly those involving spectroscopy. Further tasks include improving detector uniformity and decreasing persistence. The next generation of sensors will be four times larger, meeting the size requirements for the Habitable Worlds Observatory, NASA’s next envisioned flagship mission, with the goals of imaging and characterizing Earth-like exoplanets.
      Project Lead: Dr. Michael Bottom, University of Hawai’i
      Sponsoring Organization:  NASA Strategic Astrophysics Technology (SAT) Program
      Share








      Details
      Last Updated Feb 18, 2025 Related Terms
      Technology Highlights Astrophysics Astrophysics Division Science-enabling Technology Explore More
      6 min read Webb Reveals Rapid-Fire Light Show From Milky Way’s Central Black Hole


      Article


      5 mins ago
      2 min read Hubble Captures a Cosmic Cloudscape


      Article


      4 days ago
      5 min read Webb Maps Full Picture of How Phoenix Galaxy Cluster Forms Stars


      Article


      5 days ago
      View the full article
    • By NASA
      NASA’s Nancy Grace Roman Space Telescope team has successfully integrated the mission’s deployable aperture cover — a visor-like sunshade that will help prevent unwanted light from entering the telescope — to the outer barrel assembly, another structure designed to shield the telescope from stray light in addition to keeping it at a stable temperature.
      Technicians at NASA’s Goddard Space Flight Center in Greenbelt, Md., recently integrated the deployable aperture cover to the outer barrel assembly for the agency’s Nancy Grace Roman Space Telescope.NASA/Chris Gunn “It’s been incredible to see these major components go from computer models to building and now integrating them,” said Sheri Thorn, an aerospace engineer working on Roman’s sunshade at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Since it’s all coming together at Goddard, we get a front row seat to the process. We’ve seen it mature, kind of like watching a child grow up, and it’s a really gratifying experience.”
      The sunshade functions like a heavy-duty version of blackout curtains you might use to keep your room extra dark. It will make Roman more sensitive to faint light from across the universe, helping astronomers see dimmer and farther objects. Made of two layers of reinforced thermal blankets, the sunshade is designed to remain folded during launch and deploy after Roman is in space. Three booms will spring upward when triggered electronically, raising the sunshade like a page in a pop-up book.
      In this photo, technician Brenda Estavia is installing the innermost layer of the sunshade onto the deployable aperture cover structure of NASA’s Nancy Grace Roman Space Telescope. NASA/Jolearra Tshiteya The sunshade blanket has an inner and outer layer separated by about an inch, much like a double-paned window. “We’re prepared for micrometeoroid impacts that could occur in space, so the blanket is heavily fortified,” said Brian Simpson, Roman’s deployable aperture cover lead at NASA Goddard. “One layer is even reinforced with Kevlar, the same thing that lines bulletproof vests. By placing some space in between the layers we reduce the risk that light would leak in, because it’s unlikely that the light would pass through both layers at the exact same points where the holes were.”
       
      Over the course of a few hours, technicians meticulously joined the sunshade to the outer barrel assembly — both Goddard-designed components — in the largest clean room at NASA Goddard. The outer barrel assembly will help keep the telescope at a stable temperature and, like the sunshade, help shield the telescope from stray light and micrometeoroid impacts. It’s fitted with heaters to help ensure the telescope’s mirrors won’t experience wide temperature swings, which make materials expand and contract.
       
      “Roman is made up of a lot of separate components that come together after years of design and fabrication,” said Laurence Madison, a mechanical engineer at NASA Goddard. “The deployable aperture cover and outer barrel assembly were built at the same time, and up until the integration the two teams mainly used reference drawings to make sure everything would fit together as they should. So the successful integration was both a proud moment and a relief!”
      This photo shows the deployable aperture cover for NASA’s Nancy Grace Roman Space Telescope as seen through the outer barrel assembly. Both components will help shield the telescope from stray light, improving Roman’s sensitivity to faint light from across the universe.NASA/Chris Gunn Both the sunshade and outer barrel assembly have been extensively tested individually, but now that they’re connected engineers are assessing them again. Following the integration, the team tested the sunshade deployment.
       
      “Since the sunshade was designed to deploy in space, the system isn’t actually strong enough to deploy itself in Earth’s gravity,” said Matthew Neuman, a mechanical engineer working on Roman’s sunshade at NASA Goddard. “So we used a gravity negation system to offset its weight and verified that everything works as expected.”
       
      Next, the components will undergo thermal vacuum testing together to ensure they will function as planned in the temperature and pressure environment of space. Then they’ll move to a shake test to assess their performance during the extreme vibrations they’ll experience during launch.
       
      Technicians will join Roman’s solar panels to the outer barrel assembly and sunshade this spring, and then integrate them with the rest of the observatory by the end of the year. 
       
      The mission has now passed a milestone called Key Decision Point-D, marking the official transition from the fabrication stage that culminated in the delivery of major components to the phase involving assembly, integration, testing, and launch. The Roman observatory remains on track for completion by fall 2026 and launch no later than May 2027.
       
      To virtually tour an interactive version of the telescope, visit:
       
      https://roman.gsfc.nasa.gov/interactive/
      By Ashley Balzer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      301-286-1940
      Share
      Details
      Last Updated Feb 12, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Goddard Space Flight Center The Universe Explore More
      2 min read NASA Joins Telescope, Instruments to Roman Spacecraft
      Article 1 month ago 6 min read New Simulated Universe Previews Panoramas From NASA’s Roman Telescope
      Article 4 weeks ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
      Article 7 months ago View the full article
  • Check out these Videos

×
×
  • Create New...