Jump to content

Fusion-Enabled Comprehensive Exploration of the Heliosphere


Recommended Posts

  • Publishers
Posted

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of the Fusion-Enabled Comprehensive Exploration of the Heliosphere concept
Artist concept highlighting the novel approach proposed by the 2025 NIAC awarded selection of the Fusion-Enabled Comprehensive Exploration of the Heliosphere concept
NASA/Ryan Weed

Ryan Weed
Helicity Space LLC

This proposal aims to revolutionize space exploration by developing a constellation of spacecraft powered by the Helicity Drive, a compact and scalable fusion propulsion system. This innovative technology will enable rapid, multi-directional exploration of the heliosphere and beyond, providing unprecedented insights into the Sun’s vast influence on our solar system and its interaction with interstellar space. We will conduct a comprehensive feasibility study, including advanced modeling and experimental validation of the Helicity Drive’s thrust and power generation capabilities. We will also design a realistic spacecraft architecture that integrates the propulsion system with scientific instruments capable of measuring key properties of the heliosphere and interstellar medium. Each spacecraft will carry a suite of state-of-the-art scientific instruments to comprehensively measure plasma properties, magnetic fields, dust, and energetic particles, providing in-situ data from regions never before explored. This will address critical scientific questions, such as the true shape of the heliosphere and heliopause, the origin of anomalous cosmic rays, and the mechanisms driving turbulence in the heliospheric tail. Finally, we will develop a mission concept of operations that leverages the Helicity Drive’s variable specific impulse and high delta-V capability to speed-up and slow-down in order to capture key scientific data in different heliosphere regions, and the local interstellar medium along 6 different trajectories, maximizing scientific return. The successful implementation of this mission will not only revolutionize our understanding of the heliosphere and its implications for space radiation and habitability but also pave the way for future interstellar missions. By demonstrating the feasibility of fusion propulsion for deep-space exploration, including outer solar system probes and crewed missions to Mars, it will open new frontiers for scientific discovery and inspire future generations. The technological advancements and potential spinoffs resulting from this mission will also contribute significantly to the national economy.

2025 Selections

Share

Details

Last Updated
Jan 10, 2025
Editor
Loura Hall

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Jorge Chong is helping shape the future of human spaceflight, one calculation at a time. As a project manager for TRON (Tracking and Ranging via Optical Navigation) and a guidance, navigation, and control (GNC) test engineer in the Aeroscience and Flight Mechanics Division, he is leading efforts to ensure the Orion spacecraft can navigate deep space autonomously. 
      Jorge Chong in front of the Mission Control Center at NASA’s Johnson Space Center in Houston when he helped with optical navigation operations during Artemis I.Image courtesy of Jorge Chong “GNC is like the brain of a spacecraft. It involves a suite of sensors that keep track of where the vehicle is in orbit so it can return home safely,” he said. “Getting to test the components of a GNC system makes you very familiar with how it all works together, and then to see it fly and help it operate successfully is immensely rewarding.” 

      His work is critical to the Artemis campaign, which aims to return humans to the Moon and pave the way for Mars. From developing optical navigation technology that allows Orion to determine its position using images of Earth and the Moon to testing docking cameras and Light Detection and Ranging systems that enable autonomous spacecraft rendezvous, Chong is pushing the limits of exploration. He also runs high-fidelity flight simulations at Lockheed Martin’s Orion Test Hardware facility in Houston, ensuring Orion’s software is ready for the demands of spaceflight. 

      Chong’s NASA career spans seven years as a full-time engineer, plus three years as a co-op student at NASA’s Johnson Space Center in Houston. In 2024, he began leading Project TRON, an optical navigation initiative funded by a $2 million Early Career Initiative award. The project aims to advance autonomous space navigation—an essential capability for missions beyond Earth’s orbit. 
      Jorge Chong and his colleagues with the Artemis II docking camera in the Electro-Optics Lab at Johnson. From left to right: Paul McKee, Jorge Chong, and Kevin Kobylka. Bottom right: Steve Lockhart and Ronney Lovelace. Thanks to Chong’s work, the Artemis Generation is one step closer to exploring the Moon, Mars, and beyond. He supported optical navigation operations during Artemis I, is writing software that will fly on Artemis II, and leads optical testing for Orion’s docking cameras. But his path to NASA wasn’t always written in the stars. 

      “I found math difficult as a kid,” Chong admits. “I didn’t enjoy it at first, but my parents encouraged me patiently, and eventually it started to click and then became a strength and something I enjoyed. Now, it’s a core part of my career.” He emphasizes that perseverance is key, especially for students who may feel discouraged by challenging subjects. 

      Most of what Chong has learned, he says, came from working collaboratively on the job. “No matter how difficult something may seem, anything can be learned,” he said. “I could not have envisioned being involved in projects like these or working alongside such great teams before coming to Johnson.” 
      Jorge Chong (left) and his siblings Ashley and Bronsen at a Texas A&M University game. Image courtesy of Jorge Chong His career has also reinforced the importance of teamwork, especially when working with contractors, vendors, universities, and other NASA centers. “Coordinating across these dynamic teams and keeping the deliverables on track can be challenging, but it has helped to be able to lean on teammates for assistance and keep communication flowing,” said Chong.

      And soon, those systems will help Artemis astronauts explore places no human has gone before. Whether guiding Orion to the Moon or beyond, Chong’s work is helping NASA write the next chapter of space exploration. 

      “I thank God for the doors He has opened for me and the incredible mentors and coworkers who have helped me along the way,” he said. 
      View the full article
    • By NASA
      Explore This Section Science Science Activation An Afternoon of Family Science… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   2 min read
      An Afternoon of Family Science and Rocket Exploration in Alaska
      On Tuesday, January 28th, Fairbanks BEST Homeschool joined the Geophysical Institute for an afternoon of rocket exploration, hands-on activities, and stargazing inside a planetarium. This event was free and open to the public. Despite their frigid winter weather, 200 attendees were curious about the scientific endeavors of Alaska-based researchers alongside cutting-edge investigations conducted by NASA rocket scientists.
      Families and friends in attendance learned about two NASA rocket missions that would study the flickering and vanishing auroras: Ground Imaging to Rocket investigation of Auroral Fast Features (GIRAFF) and Black and Diffuse Aurora Science Surveyor (BaDASS). Visitors had an opportunity to sign up for text notifications related to the launch window. The planetarium presentations touch on Heliophysics Big Ideas that align with the three questions that drive NASA’s heliophysics research:
      What are the impacts of the changing sun on humanity? How do Earth, the solar system, and the heliosphere respond to changes on the sun? What causes the sun to vary? The event also offered sun-related hands-on activities provided by the University of Alaska Museum of the North.
      This event was offered to the community in association with the Science For Alaska Lecture Series and the 2025 NASA Sounding Rocket campaign. Every attendee left with something inspiring to think about. Parents and educators interested in learning more about auroras and do participatory science may check out NASA’s Aurorasaurus citizen science project.
      The Geophysical Institute at the University of Alaska Fairbanks is a Co-Investigating team for the NASA Heliophysics Education Activation Team (NASA HEAT), which is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Aurora Educational Resource List by Aurorasaurus
      Families constructed and decorated their paper rockets. Katelin Avery It was so much fun! We are receiving rave reviews from our families and the surrounding community. THANK YOU AGAIN FOR COLLABORATING WITH US!

      Fairbanks BEST Homeschool
      Share








      Details
      Last Updated Feb 14, 2025 Editor Earth Science Division Editorial Team Related Terms
      Science Activation Citizen Science Heliophysics Explore More
      3 min read Tribal Library Co-Design STEM Space Workshop


      Article


      1 day ago
      2 min read Newly Minted Ph.D. Studies Phytoplankton with NASA’s FjordPhyto Project


      Article


      4 days ago
      5 min read NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      NASA asked artists to imagine the future of deep space exploration in artwork meant to inspire the Artemis Generation. The NASA Moon to Mars Architecture art challenge sought creative images that represent the agency’s bold vision for crewed exploration of the lunar surface and the Red Planet. The agency has selected the recipients of the art challenge competition.  
      This collage features all the winners of the NASA Moon to Mars Architecture Art Challenge.Jimmy Catanzaro, Jean-Luc Sabourin, Irene Magi, Pavlo Kandyba, Antonella Di Cristofaro, Francesco Simone, Mia Nickell, Lux Bodell, Olivia De Grande, Sophie Duan The challenge, hosted by contractor yet2 through NASA’s Prizes, Challenges, and Crowdsourcing program, was open to artists from around the globe. Guidelines asked artists to consider NASA’s Moon to Mars Architecture development effort, which uses engineering processes to distil NASA’s Moon to Mars Objectives into the systems needed to accomplish them. NASA received 313 submissions from 22 U.S. states and 47 countries.
      The architecture includes four segments of increasing complexity. For this competition, NASA sought artistic representations of the two furthest on the timeline: the Sustained Lunar Evolution segment and the Humans to Mars segment.
      The Sustained Lunar Evolution segment is an open canvas for exploration of the Moon, embracing new ideas, systems, and partners to grow to a long-term presence on the lunar surface. Sustained lunar evolution means more astronauts on the Moon for longer periods of time, increased opportunities for science, and even the large-scale production of goods and services derived from lunar resources. It also means increased cooperation and collaboration with international partners and the aerospace industry to build a robust lunar economy.   The Humans to Mars segment will see the first human missions to Mars, building on the lessons we learn from exploring the Moon. These early missions will focus on Martian exploration and establishing the foundation for a sustained Mars presence. NASA architects are examining a wide variety of options for transportation, habitation, power generation, utilization of Martian resources, scientific investigations, and more. Final judging for the competition took place at NASA’s annual Architecture Concept Review meeting. That review brought together agency leadership from NASA mission directorates, centers, and technical authorities to review the 2024 updates to the Moon to Mars Architecture. NASA selected the winning images below during that review:
      Sustained Lunar Evolution Segment Winners
      First Place:
      Jimmy Catanzaro – Henderson, Nevada
      Second Place:
      Jean-Luc Sabourin – Ottawa, Canada
      Third Place (Tie):
      Irene Magi – Prato, Italy
      Pavlo Kandyba – Kyiv, Ukraine
      Humans to Mars Segment Winners
      First Place (Tie):
      Antonella Di Cristofaro – Chieti, Italy
      Francesco Simone – Gatteo, Italy
      Third Place:
      Mia Nickell – Suwanee, Georgia
      Under 18 Submission Winners
      First Place:
      Lux Bodell – Minnetonka, Minnesota
      Second Place:
      Olivia De Grande – Milan, Italy
      Third Place:
      Sophie Duan – Ponte Vedra, Florida
      The NASA Tournament Lab, part of the Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate, managed the challenge. The program supports global public competitions and crowdsourcing as tools to advance NASA research and development and other mission needs.
      View the full article
    • By NASA
      Artist’s rendering of astronauts managing logistics on the lunar surface. Credit: NASA NASA awarded new study contracts Thursday to help support life and work on the lunar surface. As part of the agency’s blueprint for deep space exploration to support the Artemis campaign, nine American companies in seven states are receiving awards.
      The Next Space Technologies for Exploration Partnerships Appendix R contracts will advance learning in managing everyday challenges in the lunar environment identified in the agency’s Moon to Mars architecture. 
      “These contract awards are the catalyst for developing critical capabilities for the Artemis missions and the everyday needs of astronauts for long-term exploration on the lunar surface,” said Nujoud Merancy, deputy associate administrator, Strategy and Architecture Office at NASA Headquarters in Washington. “The strong response to our request for proposals is a testament to the interest in human exploration and the growing deep-space economy. This is an important step to a sustainable return to the Moon that, along with our commercial partners, will lead to innovation and expand our knowledge for future lunar missions, looking toward Mars.”
      The selected proposals have a combined value of $24 million, spread across multiple companies, and propose innovative strategies and concepts for logistics and mobility solutions including advanced robotics and autonomous capabilities:
      Blue Origin, Merritt Island, Florida – logistical carriers; logistics handling and offloading; logistics transfer; staging, storage, and tracking; surface cargo and mobility; and integrated strategies Intuitive Machines, Houston, Texas – logistics handling and offloading; and surface cargo and mobility Leidos, Reston, Virginia – logistical carriers; logistics transfer; staging, storage, and tracking; trash management; and integrated strategies Lockheed Martin, Littleton, Colorado – logistical carriers; logistics transfer; and surface cargo and mobility MDA Space, Houston – surface cargo and mobility Moonprint, Dover, Delaware – logistical carriers Pratt Miller Defense, New Hudson, Michigan – surface cargo and mobility Sierra Space, Louisville, Colorado – logistical carriers; logistics transfer; staging, storage, and tracking; trash management; and integrated strategies Special Aerospace Services, Huntsville, Alabama – logistical carriers; logistics handling and offloading; logistics transfer; staging, storage, and tracking; trash management; surface cargo and mobility; and integrated strategies NASA is working with industry, academia, and the international community to continuously evolve the blueprint for crewed exploration and taking a methodical approach to investigating solutions that set humanity on a path to the Moon, Mars, and beyond.
      For more on NASA’s mission to return to the Moon, visit:
      https://www.nasa.gov/humans-in-space/artemis
      -end-
      Cindy Anderson / James Gannon
      Headquarters, Washington
      202-358-1600
      cindy.a.anderson@nasa.gov / james.h.gannon@nasa.gov 
      Share
      Details
      Last Updated Jan 23, 2025 LocationNASA Headquarters Related Terms
      Artemis Exploration Systems Development Mission Directorate Humans in Space NASA Headquarters View the full article
    • By NASA
      The Space Shuttle Columbia and Space Shuttle Challenger Memorials are seen after a wreath laying ceremony that was part of NASA’s Day of Remembrance, Thursday, Jan. 26, 2023, at Arlington National Cemetery in Arlington, Virginia. (Credit: NASA) NASA will observe its annual Day of Remembrance on Thursday, Jan. 23, honoring the members of the NASA family who lost their lives in the pursuit of exploration and discovery for benefit of humanity. The event, traditionally held every year on the fourth Thursday of January, remembers the crews of Apollo 1 and the space shuttles Challenger and Columbia.
      “On NASA’s Day of Remembrance, we pause to reflect on the bravery, dedication, and selflessness of the extraordinary individuals who pushed the boundaries of exploration and discovery,” said NASA Associate Administrator Jim Free. “Their legacies remind us of the profound responsibility we have to carry their dreams forward while ensuring safety remains our guiding principle.”
      Free will lead an observance at 1 p.m. EST at Arlington National Cemetery in Virginia, which will begin with a wreath-laying ceremony at the Tomb of the Unknown Soldier, followed by observances for the Apollo 1, Challenger, and Columbia crews.
      Several agency centers also will hold observances for NASA Day of Remembrance:
      Johnson Space Center in Houston
      NASA Johnson will hold a commemoration at 10 a.m. CST at the Astronaut Memorial Grove with remarks by Center Director Vanessa Wyche. The event will have a moment of silence, a NASA T-38 flyover, taps performed by the Texas A&M Squadron 17, and a procession placing flowers at Apollo I, Challenger, and Columbia memorial trees.
      Kennedy Space Center in Florida
      NASA Kennedy and the Astronauts Memorial Foundation will host a ceremony at the Space Mirror Memorial at Kennedy’s Visitor Complex at 10 a.m. EST. The event will include remarks from Tal Ramon, son of Israeli astronaut Ilan Ramon, space shuttle Columbia.
      Kelvin Manning, deputy director at NASA Kennedy, also will provide remarks during the ceremony, which will livestream on the center’s Facebook page.
      Ames Research Center in California’s Silicon Valley
      NASA Ames will hold a remembrance ceremony at 1 p.m. PST that includes remarks from Center Director Eugene Tu, a moment of silence, and bell ringing commemoration.
      Glenn Research Center in Cleveland
      NASA Glenn will observe Day of Remembrance with remarks at 1 p.m. EST from Center Director Jimmy Kenyon followed by wreath placement, moment of silence, and taps at Lewis Field​.
      Langley Research Center in Hampton, Virginia
      NASA Langley will hold a remembrance ceremony with Acting Center Director Dawn Schaible followed by placing flags at the Langley Workers Memorial.
      Marshall Space Flight Center in Huntsville, Alabama
      NASA Marshall will hold a candle-lighting ceremony and wreath placement at 9:30 a.m. CST. The ceremony will include remarks from Larry Leopard, associate director, and Bill Hill, director of Marshall’s Office of Safety and Mission Assurance. 
      Stennis Space Flight Center in Bay St. Louis, Mississippi
      NASA Stennis and the NASA Shared Services Center will hold a wreath-laying ceremony at 9 a.m. CST with remarks from Center Director John Bailey and Anita Harrell, NASA Shared Services Center executive director.
      The agency also is paying tribute to its fallen astronauts with special online content, updated on NASA’s Day of Remembrance, at:
      https://www.nasa.gov/dor
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Share
      Details
      Last Updated Jan 16, 2025 LocationNASA Headquarters View the full article
  • Check out these Videos

×
×
  • Create New...