Members Can Post Anonymously On This Site
Summary of the 2024 NASA LCLUC Science Team Meeting
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA/Lori Losey What do the X-15 and the space shuttles have in common? Information from the rocket plane and the spacecraft, as well as many experimental aircraft, were tracked from a pedestal and telemetry dish during key eras in flight history at or near NASA’s Armstrong Flight Research Center in Edwards, California.
When the NASA facility’s administration Building 4800 was built in the 1950s, the infrastructure was included to anchor the rooftop pedestal and dish as the primary way to gather data from aircraft during flights. It was retired in 2015, but a recent roofing project enabled relocation of the artifact to a new place of honor for its support of many experimental aircraft such as the lifting body aircraft, the reverse swept wing X-29, and the highly maneuverable X-31.
“Gathering telemetry data from aircraft on missions is at the core of what we do. Close proximity to the back ramp was one of the big advantages of having the telemetry antenna on the roof in the early days,” said Bob Guere, NASA Armstrong Range Operations chief, referring to the area where aircraft taxi from the hangar to the flightline. “You were able to support ground tests and check airplanes before they taxied without having to use telemetry antennas positioned further away.”
A cable is secured on a rooftop pedestal located on Building 4800 at NASA’s Armstrong Flight Research Center in Edwards, California, on Oct. 4, 2024. The pedestal, which was prepared for a helicopter lift to remove it from the roof, was used since the 1950s until 2015 to enable different telemetry dishes to collect data from research aircraft.NASA/Carla Thomas The rooftop pedestal was key in the early days of the center and its refurbishment in 2003 restored its value. The transformation also included certification to meet Space Shuttle Program landing requirements.
“When a space shuttle deorbited from space it was coming over the top of Edwards,” Guere said. “Telemetry antennas on the hill near NASA Armstrong looked down and with dirt and concrete in the background there were reflections. The rooftop antenna was closer to ground level and looked up as the orbiter was coming in for a landing. It provided an excellent link for shuttle landings.”
The pedestal and dish were not removed when it was decommissioned because of the cost. Now, it’s economical to use a helicopter to remove the pedestal from the roof compared to other options as part of a major project focusing primarily on re-roofing Building 4800. The helicopter lift of the pedestal took a month to plan, plus time to obtain airspace operation and landing permits from the Air Force for the removal project, said Bryan Watters, NASA Armstrong roof project manager.
A helicopter is positioned to remove a rooftop pedestal from Building 4800 at NASA’s Armstrong Flight Research Center in Edwards, California, on Oct. 4, 2024. The pedestal was used since the 1950s to 2015 to house different telemetry dishes to collect data from research aircraft.NASA/Carla Thomas The pedestal and riser measured 16 feet tall above the rooftop and housed an assembly for the 12-foot dish to rotate. The pedestal and dish together weight about 2,500 pounds and were removed separately. Crews checked the eight bolts anchoring the pedestal and dish to infrastructure on the roof prior to the arrival of a helicopter Oct. 3 before the helicopter arrived.
The following day, after additional briefings, the helicopter was positioned over Building 4800 and a cable was lowered and attached to the pedestal. Once secured, the helicopter slowly gained altitude and took its passenger to the south side of the building. There it was released from the cable and taken to a nearby warehouse for storage. Roofers demolished the steel platform on which the pedestal was located to prepare the area for new roofing materials.
Officials have not determined where the pedestal will be displayed. There are several options to place the pedestal and dish by the famous retired research aircraft on display near the entrance of NASA Armstrong.
A pedestal carried by a helicopter is positioned for a gentle placement on the ground. The helicopter removed the pedestal from the rooftop of Building 4800 at NASA’s Armstrong Flight Research Center in Edwards, California, on Oct. 4, 2024. The pedestal was used since the 1950s to 2015 to house different telemetry dishes to collect data from research aircraft.NASA/Carla Thomas A rooftop pedestal and telemetry dish gathered information from research aircraft at Building 4800 at NASA’s Armstrong Flight Research Center in Edwards, California. The pedestal was used since the 1950s to 2015 to house different dishes to collect data from research aircraft. On Oct. 4, 2024, a helicopter was used to remove the pedestal from the roof.NASA/Jim Ross Share
Details
Last Updated Jan 08, 2025 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Explore More
4 min read 2024: NASA Armstrong Prepares for Future Innovative Research Efforts
Article 3 weeks ago 3 min read Atmospheric Probe Shows Promise in Test Flight
Article 4 weeks ago 3 min read NASA Moves Drone Package Delivery Industry Closer to Reality
Article 4 weeks ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Aeronautics
Flight Innovation
Armstrong Flight Research Center History
View the full article
-
By NASA
Kennedy Space Center Director and charter members of the Florida University Space Research Consortium signed a memorandum of understanding on Jan. 8, 2025. From left: Jennifer Kunz, Associate Director, Technical, Kennedy Space Center; Kelvin Manning, Deputy Director, Kennedy Space Center; Dr. Kent Fuchs, Interim President, University of Florida; Janet Petro, Director, Kennedy Space Center; Jeanette Nuñez, Florida Lieutenant Governor; Dr. Alexander Cartwright, President, University of Central Florida; Dr. Barry Butler, President, Embry-Riddle Aeronautical University. NASA/Kim Shiflett The future of research and technology at NASA’s Kennedy Space Center in Florida is expanding Wednesday, as Kennedy’s center director and charter members in the Florida University Space Research Consortium signed a memorandum of understanding in research and development to assist with missions and contribute to NASA’s Moon to Mars exploration approach.
Officials from the consortium – designated in 2024 as the state’s official space research entity – NASA leaders, and guests participated in the signing ceremony held at Kennedy, marking a critical milestone in a partnership to advance research, technology development, education, and communication between the spaceport and the state’s growing space industry.
“Through this agreement, NASA will benefit in new and exciting ways from our longtime partnership with the universities that make Florida shine,” said NASA Administrator Bill Nelson. “As we move deeper into this golden era of space exploration, a new generation of thinkers and leaders will lead the way – thinkers and leaders like the researchers, faculty, and students of the Artemis Generation, whom we are pleased to work with through the consortium.”
The creation of the consortium was the result of more than a year of effort by leaders at Kennedy, the University of Florida, the University of Central Florida, and Embry-Riddle Aeronautical University. The agreement highlights the partnership and serves as the official start to partnering activities, with Florida now the only state with a university consortium affiliated with one of NASA’s centers.
Present at the event was Florida Governor Ron DeSantis. “It was great to visit the Space Coast Jan. 8 to announce the Florida University Space Research Consortium—our state’s official space research entity. Home to a thriving aerospace industry and world-class higher education institutions, Florida is the ideal place to launch this initiative. We are primed to lead the nation in developing a blueprint for state-space partnerships into the future.”
The mission of the consortium is to foster a symbiotic relationship between NASA Kennedy and Florida’s universities to drive innovation in space exploration, research, and technology through academic collaboration, joint projects, and workforce development.
“The launch of the Florida University Space Research Consortium is a significant milestone for our state’s aerospace sector, bringing together our world-class education system with cutting edge research and development,” said Lieutenant Governor Jeanette Nuñez. “This consortium will undoubtedly further strengthen and deepen Florida’s position as the leader in the global aerospace economy.”
The memorandum of understanding marks the dawn of a new era of cooperation between the Florida spaceport and the state’s university system, starting with the three charter universities with plans to expand to other state universities interested in participating. The push to enhance research and technological collaboration with universities has been a priority at NASA for years and has seen success at other NASA centers across the country.
While Kennedy becomes the first NASA center affiliated with a university consortium, recently NASA’s Ames Research Center in California’s Silicon Valley partnered with University of California, Berkeley, on development of the Berkeley Space Center at NASA Research Park, located at Ames. Still in development, the project is envisioned as a 36-acre discovery and innovation hub to include educational spaces, labs, offices, student housing, and a new conference center. More recently, NASA’s Johnson Space Center in Houston teamed up with Texas A&M University to break ground on a building that will become a testing laboratory for apparatuses in development for NASA’s Moon to Mars plans. In attendance for the groundbreaking was Kennedy Space Center Director Janet Petro, who was one of the signatories on the agreement.
NASA’s Kennedy Space Center Director Janet Petro signs a memorandum of understanding between Kennedy Space Center and the Florida University Space Research Consortium on Jan. 8, 2025. NASA/Kim Shiflett “This agreement is a shining example of what it looks like when we link arms and create a space for the whole to be greater than all our parts,” said Petro. “This symbiotic partnership makes way for collaborative research opportunities and increased exposure to advanced technology, significantly enhancing NASA’s research output in fields such as aerospace engineering, materials science, robotics, and environmental science, all of which are necessary for long-term human exploration as we learn to live and work deeper into space than ever before.”
For more information about NASA Kennedy, visit:
https://www.nasa.gov/kennedy
View the full article
-
By NASA
Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
A Rover Retrospective: Turning Trials to Triumphs in 2024
A look back at a few Mars 2020 mission highlights of 2024
Perseverance’s past year operating on the surface of Mars was filled with some of the mission’s highest highs, but also some of its greatest challenges. True to its name and its reputation as a mission that overcomes challenges, Perseverance and its team of scientists and engineers turned trials to triumphs in yet another outstanding year for the mission. There’s a lot to celebrate about Perseverance’s past year on Mars, but here are three of my top mission moments this year, in the order in which they happened.
1. SHERLOC’s cover opens
NASA’s Mars Perseverance rover captured this image of its SHERLOC instrument (Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals), showing the cover mechanism of SHERLOC’s Autofocus and Context Imager camera (ACI) in a nearly open configuration. The rover acquired this image using its Left Mastcam-Z camera — one of a pair of cameras located high on the rover’s mast — on March 3, 2024 (sol 1079, or Martian day 1,079 of the Mars 2020 mission), at the local mean solar time of 12:18:41. NASA/JPL-Caltech/ASU In early January the SHERLOC instrument’s cover mechanism stopped responding during a routine attempt to acquire data on a rock outcrop in the Margin unit. After six weeks of team diagnostics, the SHERLOC instrument was declared offline and many of us feared that the instrument had met its end. In early March, the team made significant progress in driving the cover to a more open position. Then, to everyone’s surprise, the SHERLOC cover moved unexpectedly to a nearly completely open position during a movement of the arm on sol 1077. I remember staring in wonder at the image of the cover (taken on sol 1079), feeling real optimism for the first time that SHERLOC could be recovered. The team spent the next few months developing a new plan for operating SHERLOC with its cover open, and the instrument was declared back online at the end of June.
2. A potential biosignature at Cheyava Falls
NASA’s Perseverance Mars rover captured this image of “leopard spots” on a rock nicknamed “Cheyava Falls” on July 18, 2024 — sol 1212. or the 1,212th Martian day of the mission. Running the length of the rock are large white calcium sulfate veins. Between those veins are bands of material whose reddish color suggests the presence of hematite, one of the minerals that gives Mars its distinctive rusty hue. Scientists are particularly interested in the millimeter-size, irregularly shaped light patches on the central reddish band (from lower left to upper right of the image) that resemble leopard spots. Perseverance captured the image using a camera called WATSON (Wide Angle Topographic Sensor for Operations and eNgineering), part of the SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) instrument suite located on the end of Perseverance’s robotic arm. NASA/JPL-Caltech/MSSS No top list would be complete without Perseverance’s discovery in July 2024 of a potential biosignature in the form of sub-millimeter-scale “leopard spots” at an outcrop called Cheyava Falls. These features, which formed during chemical reactions within the rock, have dark rims and light cores and occur together with organic carbon. On Earth, these chemical reactions are often driven by or associated with microbes. Although we can’t say for sure that microbes were involved in the formation of the leopard spots at Cheyava Falls, this question can be answered when Perseverance’s samples are returned to Earth. In the meantime, this rock remains one of the most compelling rocks discovered on Mars.
3. Arrival at Witch Hazel Hill
NASA’s Mars Perseverance rover acquired this image at the top of Witch Hazel Hill, of the South Arm and Minnie Hill outcrops. Perseverance used its Left Navigation Camera (Navcam) — which also aids in driving — located high on the rover’s mast. The rover captured the image on Dec. 16, 2024 (sol 1359, or Martian day 1,359 of the Mars 2020 mission), at the local mean solar time of 13:26:38. NASA/JPL-Caltech Closing out 2024 on a high note, in mid-December Perseverance arrived at the top of a sequence of rock exposed on the western edge of the Jezero crater rim called Witch Hazel Hill. These rocks pre-date the formation of Jezero crater and could be amongst the oldest rocks exposed on the surface of Mars. These rocks have the potential to tell us about a period of solar system history not well-preserved on our own planet Earth, and they may record important clues about the early history and habitability of Mars. Witch Hazel Hill first caught my attention during landing site selection several years ago, when we were debating the merits of landing Perseverance in Jezero versus sites outside the crater. At the time, this area seemed just out of reach for a Jezero-focused mission, so I’m thrilled that the rover is now exploring this site!
The Mars 2020 mission had its ups and downs and a fair share of surprises during 2024, but we are looking ahead to 2025 with excitement, as Perseverance continues to explore and sample the Jezero crater rim.
Written by Katie Stack Morgan, Mars 2020 Deputy Project Scientist
Share
Details
Last Updated Jan 08, 2025 Related Terms
Blogs Explore More
2 min read Sols 4416-4417: New Year, New Clouds
Article
17 hours ago
2 min read Sols 4402-4415: Rover Decks and Sequence Calls for the Holidays
Article
1 week ago
4 min read Sols 4398-4401: Holidays Ahead, Rocks Under the Wheels
Article
3 weeks ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Lunar Planet Vac, or LPV, is one of 10 payloads set to be carried to the Moon by the Blue Ghost 1 lunar lander in 2025. LPV is designed to efficiently collect and transfer lunar soil from the surface to other science and analysis instruments on the Moon.Photo courtesy Firefly Aerospace Among all the challenges of voyaging to and successfully landing on other worlds, the effective collection and study of soil and rock samples cannot be underestimated.
To quickly and thoroughly collect and analyze samples during next-generation Artemis Moon missions and future journeys to Mars and other planetary bodies, NASA seeks a paradigm shift in techniques that will more cost-effectively obtain samples, conduct in situ testing with or without astronaut oversight, and permit real-time sample data return to researchers on Earth.
That’s the planned task of an innovative technology demonstration called Lunar PlanetVac (LPV), one of 10 NASA payloads flying aboard the next lunar delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative. LPV will be carried to the surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
Developed by Honeybee Robotics, a Blue Origin company of Altadena, California, LPV is a pneumatic, compressed gas-powered sample acquisition and delivery system – essentially, a vacuum cleaner that brings its own gas. It’s designed to efficiently collect and transfer lunar soil from the surface to other science instruments or sample return containers without reliance on gravity. Secured to the Blue Ghost lunar lander, LPV’s sampling head will use pressurized gas to stir up the lunar regolith, or soil, creating a small tornado. If successful, material from the dust cloud it creates then will be funneled into a transfer tube via the payload’s secondary pneumatic jets and collected in a sample container. The entire autonomous operation is expected to take just seconds and maintains planetary protection protocols. Collected regolith – including particles up to 1 cm in size, or roughly 0.4 inches – will be sieved and photographed inside the sample container with the findings transmitted back to Earth in real time.
The innovative approach to sample collection and in situ testing could prove to be a game-changer, said Dennis Harris, who manages the LPV payload for the CLPS initiative at NASA’s Marshall Space Flight Center in Huntsville, Alabama.
“There’s no digging, no mechanical arm to wear out requiring servicing or replacement – it functions like a vacuum cleaner,” Harris said. “The technology on this CLPS payload could benefit the search for water, helium, and other resources and provide a clearer picture of in situ materials available to NASA and its partners for fabricating lunar habitats and launch pads, expanding scientific knowledge and the practical exploration of the solar system every step of the way.”
Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
Learn more about. CLPS and Artemis at:
https://www.nasa.gov/clps
Alise Fisher
Headquarters, Washington
202-358-2546
Alise.m.fisher@nasa.gov
Headquarters, Washington
202-358-2546
Alise.m.fisher@nasa.gov
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
corinne.m.beckinger@nasa.gov
Share
Details
Last Updated Jan 08, 2025 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
5 min read NASA’s LEXI Will Provide X-Ray Vision of Earth’s Magnetosphere
A NASA X-ray imager is heading to the Moon as part of NASA’s Artemis campaign,…
Article 5 days ago 3 min read NASA Anticipates Lunar Findings From Next-Generation Retroreflector
Article 6 days ago 3 min read NASA Science Payload to Study Sticky Lunar Dust Challenge
Article 3 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
4 min read
Astronaut Set to Patch NASA’s X-ray Telescope Aboard Space Station
NASA astronaut Nick Hague will install patches to the agency’s NICER (Neutron star Interior Composition Explorer) X-ray telescope on the International Space Station as part of a spacewalk scheduled for Jan. 16. Hague, along with astronaut Suni Williams, will also complete other tasks during the outing.
NICER will be the first NASA observatory repaired on-orbit since the last servicing mission for the Hubble Space Telescope in 2009.
Hague and other astronauts, including Don Pettit, who is also currently on the space station, rehearsed the NICER patch procedures in the NBL (Neutral Buoyancy Laboratory), a 6.2-million-gallon indoor pool at NASA’s Johnson Space Center in Houston, in 2024.
NASA astronaut Nick Hague holds a patch for NICER (Neutron star Interior Composition Explorer) at the end of a T-handle tool during a training exercise on May 16, 2024, in the NBL (Neutral Buoyancy Laboratory) at NASA’s Johnson Space Center in Houston. NASA/NBL Dive Team Astronaut Nick Hague removes a patch from the caddy using a T-handle tool during a training exercise in the NBL at NASA Johnson on May 16, 2024. The booklet on his wrist has a schematic of the NICER telescope and where the patches will go.NASA/NBL Dive Team “We use the NBL to mimic, as much as possible, the conditions astronauts will experience while preforming a task during a spacewalk,” said Lucas Widner, a flight controller at KBR and NASA Johnson who ran the NICER NBL sessions. “Most projects outside the station focus on maintenance and upgrades to components like solar panels. It’s been exciting for all of us to be part of getting a science mission back to normal operations.”
From its perch near the space station’s starboard solar array, NICER studies the X-ray sky, including erupting galaxies, black holes, superdense stellar remnants called neutron stars, and even comets in our solar system.
But in May 2023, NICER developed a “light leak.” Sunlight began entering the telescope through several small, damaged areas in the telescope’s thin thermal shields. During the station’s daytime, the light reaches the X-ray detectors, saturating sensors and interfering with NICER’s measurements of cosmic objects. The mission team altered their daytime observing strategy to mitigate the effect.
UAE (United Arab Emirates) astronaut Sultan Alneyadi captured this view of NICER from a window in the space station’s Poisk Mini-Research Module 2 in July 2023. Photos like this one helped the NICER team map the damage to the telescope’s thermal shields.NASA/Sultan Alneyadi Some of NICER’s damaged thermal shields (circled) are visible in this photograph.NASA/Sultan Alneyadi The team also developed a plan to cover the largest areas of damage using wedge-shaped patches. Hague will slide the patches into the telescope’s sunshades and lock them into place.
“We designed the patches so they could be installed either robotically or by an astronaut,” said Steve Kenyon, NICER’s mechanical engineering lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “They’re installed using a tool called a T-handle that the astronauts are already familiar with.”
The NBL contains life-size mockups of sections of the space station. Under the supervision of a swarm of scuba divers, a pair of astronauts rehearse exiting and returning through an airlock, traversing the outside of the station, and completing tasks.
For the NICER repair, the NBL team created a full-scale model of NICER and its surroundings near the starboard solar array. Hague, Pettit, and other astronauts practiced taking the patches out of their caddy, inserting them into the sunshades, locking them into place, and verifying they were secure.
The task took just under an hour each time, which included the time astronauts needed to travel to NICER, set up their tools, survey the telescope for previously undetected damage, complete the repair, and clean up their tools.
Practice runs also provided opportunities for the astronauts to troubleshoot how to position themselves so they could reach NICER without touching it too often and for flight controllers to identify safety concerns around the repair.
Astronaut Don Pettit simulates taking pictures of the NICER telescope mockup during a training exercise in the NBL at NASA Johnson on May 16, 2024.NASA/NBL Dive Team Astronaut Don Pettit removes a patch from the caddy during a training exercise in the NBL at NASA Johnson on May 16, 2024.NASA/NBL Dive Team Being fully submerged in a pool is not the same as being in space, of course, so some issues that arose were “pool-isms.” For example, astronauts sometimes drifted upward while preparing to install the patches in a way unlikely to happen in space.
Members of the NICER team, including Kenyon and the mission’s principal investigator, Keith Gendreau at NASA Goddard, supported the NBL practice runs. They helped answer questions about the physical aspects of the telescope, as well as science questions from the astronauts and flight controllers. NICER is the leading source of science results on the space station.
“It was awesome to watch the training sessions and be able to debrief with the astronauts afterward,” Gendreau said. “There isn’t usually a lot of crossover between astrophysics science missions and human spaceflight. NICER will be the first X-ray telescope serviced by astronauts. It’s been an exciting experience, and we’re all looking forward to the spacewalk where it will all come together.”
The NICER telescope is an Astrophysics Mission of Opportunity within NASA’s Explorers Program, which provides frequent flight opportunities for world-class scientific investigations from space utilizing innovative, streamlined, and efficient management approaches within the heliophysics and astrophysics science areas. NASA’s Space Technology Mission Directorate supported the SEXTANT component of the mission, demonstrating pulsar-based spacecraft navigation.
Download high-resolution images and videos of NICER at NASA’s Scientific Visualization Studio. By Jeanette Kazmierczak
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share
Details
Last Updated Jan 08, 2025 Related Terms
Astrophysics Black Holes Goddard Space Flight Center International Space Station (ISS) ISS Research Johnson Space Center Neutron Stars NICER (Neutron star Interior Composition Explorer) Pulsars The Universe View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.