Jump to content

Recommended Posts

  • Publishers
Posted
arcstone-inter-calibration-sun-and-moon-
The ARCSTONE observatory is shown in low Earth orbit with the spectrometer viewing the Sun and Moon. The spacecraft rotates in order to view the Moon or the Sun.

One of the most challenging tasks in remote sensing from space is achieving required instrument calibration accuracy on-orbit. The Moon is considered to be an excellent exoatmospheric calibration source. However, the current accuracy of the Moon as an absolute reference is limited to 5 – 10%, and this level of accuracy is inadequate to meet the challenging objective of Earth Science observations. ARCSTONE is a mission concept that provides a solution to this challenge. An orbiting spectrometer flying on a small satellite in low Earth orbit will provide lunar spectral reflectance with accuracy sufficient to establish an SI-traceable absolute lunar calibration standard for past, current, and future Earth weather and climate sensors.

Learn More.

screenshot-2025-01-09-at-8-53-51 am.png?

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Live High-Definition Views from the International Space Station (Official NASA Stream)
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The engineering club from Palmdale High School in Palmdale, California, visits NASA’s Armstrong Research Flight Center in Edwards, California. The students took a group photo in front of the historic X-1E aircraft on display at the center.NASA/Genaro Vavuris A group of enthusiastic high school students recently visited NASA to learn about facilities and capabilities that enable the agency’s researchers to explore, innovate, and inspire for the benefit of humanity.
      Engineering club students from Palmdale High School in California were able to connect classroom lessons to real-world applications, sparking curiosity and ambition while at NASA’s Armstrong Flight Research Center in Edwards, California. “I learned a lot about the different careers that you can get at a place like NASA,” student Roberto Cisnero said.
      Through partnerships with the regional STEM community, NASA’s STEM Engagement provides local students with hands-on opportunities aligned with NASA’s missions. “Many students do not get the opportunity to be encouraged to pursue STEM careers. Part of our NASA mission is to be that encourager,” said Randy Thompson, deputy director for NASA Armstrong Research and Engineering.
      Highlights from the visit included demonstrations at a mission control room, the Subscale Flight Research Laboratory, the Flight Loads Laboratory, and the Experimental Fabrication Shop, all of which support high-risk, atmospheric flight research and test projects. Students engaged with laboratory technicians, engineers, and program managers, asking questions about the work they do. “It was fun to see what the valued people at NASA do with all of the resources,” student Jonathan Peitz said.
      NASA’s California Office of STEM Engagement hosted the visit in celebration of National Aviation History Month. By supporting students, educators, and expanding STEM participation, NASA aims to inspire future leaders and build a diverse, skilled workforce.
      Students examine the Global Hawk Fairing Load Test at the Experimental Fabrication Shop at NASA’s Armstrong Research Flight Center in Edwards, California. The students are from the engineering club from Palmdale High School in Palmdale, California.NASA/Steve Freeman Students tour a control room at NASA’s Armstrong Research Flight Center in Edwards, California. The students are from the engineering club at Palmdale High School in Palmdale, California.NASA/Steve Freeman Students look at a subscale model at the Dale Reed Subscale Flight Research Laboratory at NASA’s Armstrong Research Flight Center in Edwards, California. The students are from the engineering club from Palmdale High School in Palmdale, California.NASA/Steve Freeman Students examine small parts made at the Experimental Fabrication Shop at NASA’s Armstrong Research Flight Center in Edwards, California. The students are from the engineering club from Palmdale High School in Palmdale, California.NASA/Steve Freeman Share
      Details
      Last Updated Feb 14, 2025 EditorDede DiniusContactArmstrong Communications Related Terms
      Armstrong Flight Research Center Learning Resources Next Gen STEM STEM Engagement at NASA Explore More
      2 min read An Afternoon of Family Science and Rocket Exploration in Alaska
      On Tuesday, January 28th, Fairbanks BEST Homeschool joined the Geophysical Institute for an afternoon of…
      Article 2 hours ago 3 min read Tribal Library Co-Design STEM Space Workshop
      Christine Shupla and Claire Ratcliffe Adams, from the NASA Science Activation program’s NASA@ My Library…
      Article 1 day ago 3 min read NASA’s X-59 Turns Up Power, Throttles Through Engine Tests
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Educational Resources
      Lunar Activities Collected here are a few educational activities related to eclipse science that particularly highlight the Moon, recommended by…
      Armstrong Capabilities & Facilities
      Armstrong People
      View the full article
    • By NASA
      NASA’s Roman Coronagraph Instrument will greatly advance our ability to directly image exoplanets, or planets and disks around other stars.
      The Roman Coronagraph Instrument, a technology demonstration designed and built by NASA’s Jet Propulsion Laboratory, will fly aboard NASA’s next flagship astrophysics observatory, the Nancy Grace Roman Space Telescope.
      Coronagraphs work by blocking light from a bright object, like a star, so that the observer can more easily see a nearby faint object, like a planet. The Roman Coronagraph Instrument will use a unique suite of technologies including deformable mirrors, masks, high-precision cameras, and active wavefront sensing and control to detect planets 100 million times fainter than their stars, or 100 to 1,000 times better than existing space-based coronagraphs. The Roman Coronagraph will be capable of directly imaging reflected starlight from a planet akin to Jupiter in size, temperature, and distance from its parent star.
      Artwork Key
      1. The Nancy Grace Roman Space Telescope
      2. Exoplanet Count : Total number of exoplanets discovered at the time of poster release. This number is increasing all of the time.
      3. Nancy Grace Roman’s birth year : Nancy Grace Roman was born on May 16, 1925.  
      4. Color Filters : Filters block different wavelengths, or colors, of light.
      5. Exoplanet Camera
      6. Deformable Mirrors : Adjusts the wavefront of incoming light by changing the shape of a mirror with thousands of tiny pistons.
      7. Focal Plane Mask : This is a mask that helps to block starlight and reveal exoplanets.
      8. Lyot Stop Mask : This is a mask that helps to block starlight and reveal exoplanets.
      9. Fast Steering Mirror : This element corrects for telescope pointing jitter.
      10. Additional Coronagraph Masks : These masks block most of the glare from stars to reveal faint orbiting planets and dusty debris disks.
      Downloads
      Download the Digital Version of Poster
      Jan 14, 2025
      PDF ()


      Download Press Version (highest quality for print)
      Jan 14, 2025
      PDF ()


      Keep Exploring Discover More about Roman
      Latest Roman Stories



      Roman Observatory



      About Roman



      Coronagraph


      View the full article
    • By NASA
      The Wide-Field Instrument (WFI), the primary instrument aboard NASA’s Nancy Grace Roman Space Telescope, is a 300-megapixel visible and infrared camera that will allow scientists to perform revolutionary astrophysics surveys.  
      This specialized camera detects faint light across the cosmos and will be used to study a wide range of astrophysics topics including the expansion and acceleration of our universe, planets orbiting other stars in the Milky Way, and far off galaxies.
      WFI will conduct surveys to detect and measure billions of stars and galaxies along with rare phenomena that would otherwise be difficult or impossible to find. To survey large areas of sky, WFI uses a suite of 18 detectors that convert incoming light into electrical signals that are translated into images.
      While Roman will operate alongside other space telescopes like Hubble, WFI’s capabilities are pushing the boundaries of what is possible. Roman’s WFI has a similar sensitivity and resolution to Hubble, but WFI will capture images that cover about 100 times more sky in a single observation and will survey the sky up to 1,000 times faster.
      Artwork Key
      1. The Nancy Grace Roman Space Telescope
      2. Light Path : The light entering the telescope will take this path, bouncing off of multiple focusing mirrors and passing through filters or dispersers in the element wheel to reach the detectors.
      3. Important Years : 1990: NASA’s Hubble Space Telescope launched. 1960: Nancy Grace Roman became NASA’s Chief Astronomer.
      4. Field of View : Roman’s field of view is about 100 times larger than that of the infrared camera onboard the Hubble Space Telescope. WFI’s large field of view is achieved using an array of 18 detectors which are represented by the squares in this graphic
      5. Detectors : This dial has one tick mark for each of WFI’s 18 detectors.
      6. Modes : WFI has imaging and spectroscopy modes.
      7. Wavelengths : WFI will observe in both visible and infrared light and can select which wavelengths    reach the detectors using filters in the element wheel.
      8. “Dark Energy” Drink + “Dark Matter” Candy : Roman will enable new research into the mysteries of dark energy and dark matter.  
      9. Science Goals : The names of these games capture WFI’s role as a survey instrument and the types of surveys it will perform.
      10. Joystick : This joystick features design elements found on the WFI’s element wheel assembly, a large, rotating metal disk with optics that filter or disperse light.
      Downloads
      Download the Digital Version of Poster
      Jan 14, 2025
      PDF ()


      Download Press Version (highest quality for print)
      Jan 14, 2025
      PDF ()


      Keep Exploring Discover More about Roman
      Latest Roman Stories



      Roman Observatory



      About Roman



      Wide Field Instrument


      View the full article
    • By USH
      The crew of a Surjet private air service flight had an unusual encounter on December 23 while returning to Fort Lauderdale. Flight attendant Cassandra Martin, along with two pilots, was onboard the aircraft flying over the Bahamas when an unexpected event caught their attention.

      “I suddenly heard air traffic control say, ‘We have a foreign object; can you please identify it?'” Martin recounted to NBC Miami. 
      Curious, she looked out the window. “I glanced to the left, and the pilot noticed three objects, though I only saw one. I quickly grabbed my phone, pressed it against the window, and tried to record a video of the object,” she explained. 
      Martin described the orb as white, later shifting to a faint green hue, almost as though surrounded by an electric field. The object followed their flight for about 45 minutes before disappearing. 

      What made the sighting extraordinary was the altitude. The jet was cruising at approximately 43,000 to 45,000 feet, yet the orb was far above the aircraft and still managed to track it for the extended duration. 
      The orb’s speed and maneuverability ruled out possibilities such as a balloon or a consumer drone. Unless the orb is of extraterrestrial origin, the orb might be a craft or drone equipped with highly advanced technology not yet publicly known, akin to recent reports of sophisticated drones spotted across the U.S. 
      This remarkable incident follows a December 16, 2024 sighting aboard United Airlines flight UA2359 from Chicago to Newark. During that flight, a passenger filmed several unidentified orbs at altitudes between 40,000 and 50,000 feet. Additionally, reports surfaced from at least four commercial airline pilots who witnessed mysterious, colorful, circular lights moving at extreme speeds over Oregon in the same month. 
      These repeated sightings raise questions: Are they advanced black projects hidden from public knowledge or evidence of something extraterrestrial? Regardless of their origin, the increasing reports of advanced drones and strange orbs suggest that something significant is occurring. View the full article
  • Check out these Videos

×
×
  • Create New...