Jump to content

Jupiter Mapping Traces Changes in Comet P/Shoemaker-Levy 9 Impact Sites


HubbleSite

Recommended Posts

low_STSCI-H-p-9447a-k1340x520.png

This series of color-composite maps of Jupiter, assembled from images taken with NASA's Hubble Space Telescope, allows astronomers to trace changes in the dark impact sites that resulted from the July 1994 impact of comet P/Shoemaker-Levy 9 with the giant planet. Through computer image processing, researchers "peel" the atmosphere of Jupiter off its globe and spread it flat into a map. These cylindrical projections show the entire atmosphere of Jupiter in one map. The HST's images show clearly that dark material produced in the comet explosion has continued to spread in Jupiter's atmosphere. However, the "band" of dark material is still clumpy, which suggests that the major impact sites are still localized and, so, can still be identified.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Video: 00:09:09 On 12 November 2014, after a ten-year journey through the Solar System and over 500 million kilometres from home, Rosetta’s lander Philae made space exploration history by touching down on a comet for the first time. On the occasion of the tenth anniversary of this extraordinary feat, we celebrate by taking a look back over the mission's highlights.
      Rosetta was an ESA mission with contributions from its Member States and NASA. It studied Comet 67P/Churyumov-Gerasimenko for over two years, including delivering lander Philae to the comet’s surface. Philae was provided by a consortium led by DLR, MPS, CNES and ASI.
      read the article Philae’s extraordinary comet landing relived.
      View the full article
    • By European Space Agency
      On 12 November 2014, after a ten year journey through the Solar System and over 500 million kilometres from home, Rosetta’s lander Philae made space exploration history by touching down on a comet for the first time. On the occasion of the tenth anniversary of this extraordinary feat, we celebrate Philae’s impressive achievements at Comet 67P/Churyumov-Gerasimenko.
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
      Sols 4343-4344: Late Slide, Late Changes
      NASA’s Mars rover Curiosity acquired this image using its Right Navigation Camera, showing the fractured rock target “Quarter Dome” just above and to the right of the foreground rover structure. The eastern wall of the Gediz Vallis channel can be seen in the distance. This image was taken on sol 4342 — Martian day 4,342 of the Mars Science Laboratory mission — on Oct. 23, 2024, at 12:29:34 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Oct. 23, 2024
      Curiosity is driving along the western edge of the Gediz Vallis channel, heading for a good vantage point before turning westward and leaving the channel behind to explore the canyons beyond. The contact science for “Chuck Pass” on sol 4341 and backwards 30-meter drive (about 98 feet) on sol 4342 completed successfully. 
      This morning, planning started two hours later than usual. At the end of each rover plan is a baton pass involving Curiosity finishing its activities from the previous plan, transmitting its acquired data to a Mars-orbiting relay satellite passing over Gale Crater, and having that satellite send this data to the Deep Space Network on Earth. This dataset is crucial to our team’s decisions on Curiosity’s next activities. It is not always feasible for us to get our critical data transmitted before the preferred planning shift start time of 8 a.m. This leads to what we call a “late slide,” when our planning days start and end later than usual. 
      Today’s shift began as the “decisional downlink” arrived just before 10 a.m. PDT. The science planning team jumped into action as the data rolled in, completed plans for two sols of science activities, then had to quickly change those plans completely as the Rover Planners perusing new images from the decisional downlink determined that the position of Curiosity’s wheels after the drive would not support deployment of its arm, eliminating the planned use of APXS, MAHLI, and the DRT on interesting rocks in the workspace. However, the science team was able to pivot quickly and create an ambitious two-sol science plan for Curiosity with the other science instruments.
      On sols 4343-4344, Curiosity will focus on examining blocks of finely layered or “laminated” bedrocks in its workspace. The “Backbone Creek” target, which has an erosion resistant vertical fin of dark material, will be zapped by the ChemCam laser to determine composition, and photographed by Mastcam. “Backbone Creek” is named for a stream in the western foothills of the Sierra Nevada of California flowing through a Natural Research Area established to protect the endangered Carpenteria californica woodland shrub.  Curiosity is currently in the “Bishop” quadrangle on our map, so all targets in this area of Mount Sharp are named after places in the Sierra Nevada and Owens Valley of California. A neighboring target rock, “Fantail Lake,” which has horizontal fins among its layers, will also be imaged at high resolution by Mastcam. This target name honors a large alpine lake at nearly 10,000 feet just beyond the eastern boundary of Yosemite National Park. A fractured rock dubbed “Quarter Dome,” after a pair of Yosemite National Park’s spectacular granitic domes along the incomparable wall of Tenaya Canyon between Half Dome and Cloud’s Rest, will be the subject of mosaic images for both Mastcam and ChemCam RMI to obtain exquisite detail on delicate layers across its broken surface (see image).  The ChemCam RMI telescopic camera will look at light toned rocks on the upper Gediz Vallis ridge. Curiosity will also do a Navcam dust devil movie and mosaic of dust on the rover deck, then determine dust opacity in the atmosphere using Mastcam. 
      Following this science block, Curiosity will drive about 18 meters (about 59 feet) and perform post-drive imaging, including a MARDI image of the ground under the rover. On sol 4344, the rover will do Navcam large dust devil and deck surveys. It will then use both Navcam and ChemCam for an AEGIS observation of the new location. Presuming that Curiosity ends the drive on more solid footing than today’s location, it will do contact science during the weekend plan, then drive on towards the next fascinating waypoint on our journey towards the western canyons of Mount Sharp.
      Written by Deborah Padgett, OPGS Task Lead at NASA’s Jet Propulsion Laboratory
      Image Download Share








      Details
      Last Updated Oct 25, 2024 Related Terms
      Blogs Explore More
      2 min read Red Rocks with Green Spots at ‘Serpentine Rapids’


      Article


      1 hour ago
      4 min read Sols 4341-4342: A Bumpy Road


      Article


      23 hours ago
      3 min read Sols 4338-4340: Decisions, Decisions


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA logo In fiscal year 2023, NASA investments supported 66,208 jobs in the state of California, generated $18.5 billion in economic output and $1 billion in tax revenue to the state’s economy.
      Overall, NASA generated an estimated $9.5 billion in federal, state, and local taxes throughout the United States.
      NASA’s Armstrong Flight Research Center in Edwards, California is one of three NASA centers in the state that contributes to this economic achievement. The center supports critical research in sustainable flight, air mobility, and airborne science, reinforcing the region as a hub of aerospace innovation.
      Most notably, NASA Armstrong plays a unique role in the Quesst mission and X-59 project, aimed at reducing the sonic booms into quieter “sonic thumps,” to change regulations impeding supersonic flight over land. Additionally, maturing key airframe technologies with the X-66 aircraft in the Sustainable Flight Demonstrator project which may influence the next generation single-aisle seat class airliner. The Center also supports the research of electric air taxis and drones to operate safely in the national airspace as well as supporting science aircraft for NASA’s Earth Science Mission.
      NASA’s Moon to Mars campaign generated 16,129 jobs and $4.7 billion in economic output in California. Collaborations with contractors like Boeing and Lockheed Martin further extended these benefits by creating thousands of high-skilled jobs in the Antelope Valley and across the state.
      NASA also fosters partnerships with educational institutions across the state, investing $39.5 million in universities to cultivate the next generation of aerospace innovators. These investments bring STEM opportunities to local communities and prepare students for careers in cutting-edge industries – adding to the agency’s most valuable asset, its workforce.
      NASA embraces the challenges of exploring the unknown and making the impossible possible as we continue our global leadership in science, human spaceflight, aerospace innovation, and technology development, and support the U.S. economy and benefit all.
      Read the full Economic Impact Report for Fiscal Year 2023.
      -end-
      Nicolas Cholula / Sarah Mann
      NASA’s Armstrong Flight Research Center
      661-714-3853 / 661-233-2758
      nicolas.h.cholula@nasa.gov /sarah.mann@nasa.gov
      Share
      Details
      Last Updated Oct 24, 2024 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.govSarah Mannsarah.mann@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Explore More
      4 min read NASA Pilots Add Perspective to Research
      Article 1 week ago 3 min read Sacrifice and Success: NASA Engineer Honors Family Roots
      Article 1 week ago 4 min read Sacrificio y Éxito: Ingeniero de la NASA honra sus orígenes familiares
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong People
      Armstrong Capabilities & Facilities
      Aircraft Flown at Armstrong
      View the full article
    • By NASA
      Kennedy Space Center Director Janet Petro speaks in March 2022 during the annual State of NASA event at the Florida spaceport. NASA/Kim Shiflett America is returning to the Moon with our sights set on Mars, and NASA is leading the way. Along with our industry and international partners, we’re advancing scientific research, inspiring the next generation of explorers, and ensuring reliable and continuous access to space for our nation.
      NASA’s Economic Impact Report for fiscal year (FY) 2023 highlights the nation’s strong return on its investment in NASA. Our missions help unveil the secrets of the universe and our home planet while also benefitting the taxpayers, communities, and industries across the country.
      Here at the agency’s Kennedy Space Center in Florida, we are on track for another record-setting year of launches from our Space Coast. Recent NASA missions will tell us more about Earth’s weather and climate, explore Jupiter’s moon Europa for the ingredients of life, and enable more innovative research on the International Space Station. We’re also busy building the Artemis rockets, spacecraft, and technologies that will allow our astronauts to live and work on the Moon.
      While exploring the universe for the benefit of all, NASA is also supporting the U.S. economy. During FY23, an investment of less than one-half of 1% of the federal budget, the agency generated $76 billion in total economic output nationwide.
      In Florida alone, NASA activities in FY2023 supported 35,685 jobs in the state and $8.2 billion in economic output, resulting in an additional $286.6 million in state tax revenue. NASA Kennedy’s unique facilities, proven technical capabilities, and master plan enable nearly 250 partnerships with 100 private-sector partners. And the dedication and commitment of our workforce means that our spaceport remains the world’s leader in space science, human exploration, and technology development.
      As we look toward a future of more exploration and discovery, I invite you to learn more about the impacts that NASA missions may have had in your life. The agency’s technology transfer initiatives transition NASA innovations into private hands, where real impacts are made. And NASA’s STEM engagements encourage research and the study of science, technology, engineering, and math at all ages.
      And, of course, I hope you will learn more about the exciting work we’re doing at Earth’s premier spaceport by visiting:
      www.nasa.gov/kennedy
      -end-
      Images of Janet Petro are available from NASA’s image library in vertical and horizontal  formats.
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...