Jump to content

NASA Joins Telescope, Instruments to Roman Spacecraft


Recommended Posts

  • Publishers
Posted

Technicians have successfully integrated NASA’s Nancy Grace Roman Space Telescope’s payload – the telescope, instrument carrier, and two instruments – to the spacecraft that will deliver the observatory to its place in space and enable it to function while there.

“With this incredible milestone, Roman remains on track for launch, and we’re a big step closer to unveiling the cosmos as never before,” said Mark Clampin, acting deputy associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. “It’s been fantastic to watch the team’s progress throughout the integration phase. I look forward to Roman’s transformative observations.”

photo of the integrated Roman payload and spacecraft
Technicians recently integrated the payload – telescope, instrument carrier, and two instruments – for NASA’s Nancy Grace Roman Space Telescope in the big clean room at the agency’s Goddard Space Flight Center in Greenbelt, Md.
NASA/Chris Gunn

The newly joined space hardware will now undergo extensive testing. The first test will ensure each major element operates as designed when integrated with the rest of the observatory and establish the hardware’s combined performance. Then environmental tests will subject the payload to the electromagnetic, vibration, and thermal vacuum environments it will experience during launch and on-orbit operations. These tests will ensure the hardware and the launch vehicle will not interfere with each other when operating, verify the communications antennas won’t create electromagnetic interference with other observatory hardware, shake the assembly to make sure it will survive extreme vibration during launch, assess its performance across its expected range of operating temperatures, and make sure the instruments and mirrors are properly optically aligned.

Meanwhile, Roman’s deployable aperture cover will be integrated with the outer barrel assembly, and then the solar panels will be added before spring. Then the structure will be joined to the payload and spacecraft this fall.

The Roman mission remains on track for completion by fall 2026 and launch no later than May 2027.

By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media Contact:

Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940

Share

Details

Last Updated
Jan 08, 2025
Editor
Ashley Balzer
Contact
Location
Goddard Space Flight Center

N

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA/Lori Losey What do the X-15 and the space shuttles have in common? Information from the rocket plane and the spacecraft, as well as many experimental aircraft, were tracked from a pedestal and telemetry dish during key eras in flight history at or near NASA’s Armstrong Flight Research Center in Edwards, California.
      When the NASA facility’s administration Building 4800 was built in the 1950s, the infrastructure was included to anchor the rooftop pedestal and dish as the primary way to gather data from aircraft during flights. It was retired in 2015, but a recent roofing project enabled relocation of the artifact to a new place of honor for its support of many experimental aircraft such as the lifting body aircraft, the reverse swept wing X-29, and the highly maneuverable X-31.
      “Gathering telemetry data from aircraft on missions is at the core of what we do. Close proximity to the back ramp was one of the big advantages of having the telemetry antenna on the roof in the early days,” said Bob Guere, NASA Armstrong Range Operations chief, referring to the area where aircraft taxi from the hangar to the flightline. “You were able to support ground tests and check airplanes before they taxied without having to use telemetry antennas positioned further away.”
      A cable is secured on a rooftop pedestal located on Building 4800 at NASA’s Armstrong Flight Research Center in Edwards, California, on Oct. 4, 2024. The pedestal, which was prepared for a helicopter lift to remove it from the roof, was used since the 1950s until 2015 to enable different telemetry dishes to collect data from research aircraft.NASA/Carla Thomas The rooftop pedestal was key in the early days of the center and its refurbishment in 2003 restored its value. The transformation also included certification to meet Space Shuttle Program landing requirements.
      “When a space shuttle deorbited from space it was coming over the top of Edwards,” Guere said. “Telemetry antennas on the hill near NASA Armstrong looked down and with dirt and concrete in the background there were reflections. The rooftop antenna was closer to ground level and looked up as the orbiter was coming in for a landing. It provided an excellent link for shuttle landings.”
      The pedestal and dish were not removed when it was decommissioned because of the cost. Now, it’s economical to use a helicopter to remove the pedestal from the roof compared to other options as part of a major project focusing primarily on re-roofing Building 4800. The helicopter lift of the pedestal took a month to plan, plus time to obtain airspace operation and landing permits from the Air Force for the removal project, said Bryan Watters, NASA Armstrong roof project manager.
      A helicopter is positioned to remove a rooftop pedestal from Building 4800 at NASA’s Armstrong Flight Research Center in Edwards, California, on Oct. 4, 2024. The pedestal was used since the 1950s to 2015 to house different telemetry dishes to collect data from research aircraft.NASA/Carla Thomas The pedestal and riser measured 16 feet tall above the rooftop and housed an assembly for the 12-foot dish to rotate. The pedestal and dish together weight about 2,500 pounds and were removed separately. Crews checked the eight bolts anchoring the pedestal and dish to infrastructure on the roof prior to the arrival of a helicopter Oct. 3 before the helicopter arrived.
      The following day, after additional briefings, the helicopter was positioned over Building 4800 and a cable was lowered and attached to the pedestal. Once secured, the helicopter slowly gained altitude and took its passenger to the south side of the building. There it was released from the cable and taken to a nearby warehouse for storage. Roofers demolished the steel platform on which the pedestal was located to prepare the area for new roofing materials.
      Officials have not determined where the pedestal will be displayed. There are several options to place the pedestal and dish by the famous retired research aircraft on display near the entrance of NASA Armstrong.
      A pedestal carried by a helicopter is positioned for a gentle placement on the ground. The helicopter removed the pedestal from the rooftop of Building 4800 at NASA’s Armstrong Flight Research Center in Edwards, California, on Oct. 4, 2024. The pedestal was used since the 1950s to 2015 to house different telemetry dishes to collect data from research aircraft.NASA/Carla Thomas A rooftop pedestal and telemetry dish gathered information from research aircraft at Building 4800 at NASA’s Armstrong Flight Research Center in Edwards, California. The pedestal was used since the 1950s to 2015 to house different dishes to collect data from research aircraft. On Oct. 4, 2024, a helicopter was used to remove the pedestal from the roof.NASA/Jim Ross Share
      Details
      Last Updated Jan 08, 2025 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Explore More
      4 min read 2024: NASA Armstrong Prepares for Future Innovative Research Efforts
      Article 3 weeks ago 3 min read Atmospheric Probe Shows Promise in Test Flight
      Article 4 weeks ago 3 min read NASA Moves Drone Package Delivery Industry Closer to Reality
      Article 4 weeks ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Aeronautics
      Flight Innovation
      Armstrong Flight Research Center History
      View the full article
    • By NASA
      Kennedy Space Center Director and charter members of the Florida University Space Research Consortium signed a memorandum of understanding on Jan. 8, 2025. From left: Jennifer Kunz, Associate Director, Technical, Kennedy Space Center; Kelvin Manning, Deputy Director, Kennedy Space Center; Dr. Kent Fuchs, Interim President, University of Florida; Janet Petro, Director, Kennedy Space Center; Jeanette Nuñez, Florida Lieutenant Governor; Dr. Alexander Cartwright, President, University of Central Florida; Dr. Barry Butler, President, Embry-Riddle Aeronautical University. NASA/Kim Shiflett The future of research and technology at NASA’s Kennedy Space Center in Florida is expanding Wednesday, as Kennedy’s center director and charter members in the Florida University Space Research Consortium signed a memorandum of understanding in research and development to assist with missions and contribute to NASA’s Moon to Mars exploration approach.
      Officials from the consortium – designated in 2024 as the state’s official space research entity – NASA leaders, and guests participated in the signing ceremony held at Kennedy, marking a critical milestone in a partnership to advance research, technology development, education, and communication between the spaceport and the state’s growing space industry.
      “Through this agreement, NASA will benefit in new and exciting ways from our longtime partnership with the universities that make Florida shine,” said NASA Administrator Bill Nelson. “As we move deeper into this golden era of space exploration, a new generation of thinkers and leaders will lead the way – thinkers and leaders like the researchers, faculty, and students of the Artemis Generation, whom we are pleased to work with through the consortium.”
      The creation of the consortium was the result of more than a year of effort by leaders at Kennedy, the University of Florida, the University of Central Florida, and Embry-Riddle Aeronautical University. The agreement highlights the partnership and serves as the official start to partnering activities, with Florida now the only state with a university consortium affiliated with one of NASA’s centers.
      Present at the event was Florida Governor Ron DeSantis. “It was great to visit the Space Coast Jan. 8 to announce the Florida University Space Research Consortium—our state’s official space research entity. Home to a thriving aerospace industry and world-class higher education institutions, Florida is the ideal place to launch this initiative. We are primed to lead the nation in developing a blueprint for state-space partnerships into the future.”
      The mission of the consortium is to foster a symbiotic relationship between NASA Kennedy and Florida’s universities to drive innovation in space exploration, research, and technology through academic collaboration, joint projects, and workforce development.
      “The launch of the Florida University Space Research Consortium is a significant milestone for our state’s aerospace sector, bringing together our world-class education system with cutting edge research and development,” said Lieutenant Governor Jeanette Nuñez. “This consortium will undoubtedly further strengthen and deepen Florida’s position as the leader in the global aerospace economy.”
      The memorandum of understanding marks the dawn of a new era of cooperation between the Florida spaceport and the state’s university system, starting with the three charter universities with plans to expand to other state universities interested in participating. The push to enhance research and technological collaboration with universities has been a priority at NASA for years and has seen success at other NASA centers across the country.
      While Kennedy becomes the first NASA center affiliated with a university consortium, recently NASA’s Ames Research Center in California’s Silicon Valley partnered with University of California, Berkeley, on development of the Berkeley Space Center at NASA Research Park, located at Ames. Still in development, the project is envisioned as a 36-acre discovery and innovation hub to include educational spaces, labs, offices, student housing, and a new conference center. More recently, NASA’s Johnson Space Center in Houston teamed up with Texas A&M University to break ground on a building that will become a testing laboratory for apparatuses in development for NASA’s Moon to Mars plans. In attendance for the groundbreaking was Kennedy Space Center Director Janet Petro, who was one of the signatories on the agreement.
      NASA’s Kennedy Space Center Director Janet Petro signs a memorandum of understanding between Kennedy Space Center and the Florida University Space Research Consortium on Jan. 8, 2025. NASA/Kim Shiflett “This agreement is a shining example of what it looks like when we link arms and create a space for the whole to be greater than all our parts,” said Petro. “This symbiotic partnership makes way for collaborative research opportunities and increased exposure to advanced technology, significantly enhancing NASA’s research output in fields such as aerospace engineering, materials science, robotics, and environmental science, all of which are necessary for long-term human exploration as we learn to live and work deeper into space than ever before.”
      For more information about NASA Kennedy, visit:
      https://www.nasa.gov/kennedy
      View the full article
    • By NASA
      Credit: NASA NASA has selected Columbus Technologies and Services Inc. of El Segundo, California, to provide electrical and electronic engineering support to the agency’s Goddard Space Flight Center in Greenbelt, Maryland.
      The Electrical Systems Engineering Services IV is a cost-plus-award-fee indefinite-delivery/indefinite-quantity contract with a maximum estimated value of $1.1 billion. The base period of performance begins on April 9 and runs for five years.
      Work performed as part of the contract will assist various technical divisions at NASA Goddard with electrical and electronic responsibilities. These divisions include the Electrical Engineering Division, Instrument Systems and Technology Division, Software Engineering Division, and Mission Engineering and Systems Analysis Division. The contractor also will help manage the development of space flight, airborne, and ground system hardware, including design, testing, and fabrication.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Share
      Details
      Last Updated Jan 08, 2025 LocationNASA Headquarters Related Terms
      Goddard Space Flight Center View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Radiation Tolerant Computer, or RadPC, payload undergoes final checkout at Montana State University in Bozeman, which leads the payload project. RadPC is one of 10 NASA payloads set to fly aboard the next delivery for NASA’s CLPS (Commercial Lunar Payload Services) initiative in 2025. RadPC prototypes previously were tested aboard the International Space Station and Earth-orbiting satellites, but the technology demonstrator will undergo its biggest trial in transit to the Moon – passing through the Earth’s Van Allen radiation belts – and during its roughly two-week mission on the lunar surface. Photo courtesy Firefly Aerospace Onboard computers are critical to space exploration, aiding nearly every spacecraft function from propulsion and navigation systems to life support technology, science data retrieval and analysis, communications, and reentry.
      But computers in space are susceptible to ionizing solar and cosmic radiation. Just one high-energy particle can trigger a so-called “single event effect,” causing minor data errors that lead to cascading malfunctions, system crashes, and permanent damage. NASA has long sought cost-effective solutions to mitigate radiation effects on computers to ensure mission safety and success.
      Enter the Radiation Tolerant Computer (RadPC) technology demonstration, one of 10 NASA payloads set to fly aboard the next lunar delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative. RadPC will be carried to the Moon’s surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
      Developed by researchers at Montana State University in Bozeman, RadPC aims to demonstrate computer recovery from faults caused by single event effects of ionizing radiation. The computer is designed to gauge its own real-time state of health by employing redundant processors implemented on off-the-shelf integrated circuits called field programmable gate arrays. These tile-like logic blocks are capable of being easily replaced following a confirmed ionizing particle strike. In the event of a radiation strike, RadPC’s patented recovery procedures can identify the location of the fault and repair the issue in the background.
      As an added science benefit, RadPC carries three dosimeters to measure varying levels of radiation in the lunar environment with each tuned to different sensitivity levels. These dosimeters will continuously measure the interaction between Earth’s magnetosphere and the solar wind during its journey to the Moon. It will also provide detailed radiation information about Blue Ghost’s lunar landing site at Mare Crisium, which could help to safeguard future Artemis astronauts.
      “This is RadPC’s first mission out into the wild, so to speak,” said Dennis Harris, who manages the payload for the CLPS initiative at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “The RadPC CLPS payload is an exciting opportunity to verify a radiation-tolerant computer option that could make future Moon to Mars missions safer and more cost-effective.”
      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. Marshall manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
      T
      Learn more about. CLPS and Artemis at:
      https://www.nasa.gov/clps
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Jan 08, 2025 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
      3 min read Electrodynamic Dust Shield Heading to Moon on Firefly Lander
      Article 2 hours ago 3 min read NASA Lander to Test Vacuum Cleaner on Moon for Sample Collection
      Article 5 hours ago 2 min read NASA Names Adam Schlesinger as Commercial Lunar Payload Services Project Manager
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Lunar Planet Vac, or LPV, is one of 10 payloads set to be carried to the Moon by the Blue Ghost 1 lunar lander in 2025. LPV is designed to efficiently collect and transfer lunar soil from the surface to other science and analysis instruments on the Moon.Photo courtesy Firefly Aerospace Among all the challenges of voyaging to and successfully landing on other worlds, the effective collection and study of soil and rock samples cannot be underestimated.
      To quickly and thoroughly collect and analyze samples during next-generation Artemis Moon missions and future journeys to Mars and other planetary bodies, NASA seeks a paradigm shift in techniques that will more cost-effectively obtain samples, conduct in situ testing with or without astronaut oversight, and permit real-time sample data return to researchers on Earth.
      That’s the planned task of an innovative technology demonstration called Lunar PlanetVac (LPV), one of 10 NASA payloads flying aboard the next lunar delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative. LPV will be carried to the surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
      Developed by Honeybee Robotics, a Blue Origin company of Altadena, California, LPV is a pneumatic, compressed gas-powered sample acquisition and delivery system – essentially, a vacuum cleaner that brings its own gas. It’s designed to efficiently collect and transfer lunar soil from the surface to other science instruments or sample return containers without reliance on gravity. Secured to the Blue Ghost lunar lander, LPV’s sampling head will use pressurized gas to stir up the lunar regolith, or soil, creating a small tornado. If successful, material from the dust cloud it creates then will be funneled into a transfer tube via the payload’s secondary pneumatic jets and collected in a sample container. The entire autonomous operation is expected to take just seconds and maintains planetary protection protocols. Collected regolith – including particles up to 1 cm in size, or roughly 0.4 inches – will be sieved and photographed inside the sample container with the findings transmitted back to Earth in real time.
      The innovative approach to sample collection and in situ testing could prove to be a game-changer, said Dennis Harris, who manages the LPV payload for the CLPS initiative at NASA’s Marshall Space Flight Center in Huntsville, Alabama.
      “There’s no digging, no mechanical arm to wear out requiring servicing or replacement – it functions like a vacuum cleaner,” Harris said. “The technology on this CLPS payload could benefit the search for water, helium, and other resources and provide a clearer picture of in situ materials available to NASA and its partners for fabricating lunar habitats and launch pads, expanding scientific knowledge and the practical exploration of the solar system every step of the way.”
      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
      Learn more about. CLPS and Artemis at:
      https://www.nasa.gov/clps
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Jan 08, 2025 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
      5 min read NASA’s LEXI Will Provide X-Ray Vision of Earth’s Magnetosphere
      A NASA X-ray imager is heading to the Moon as part of NASA’s Artemis campaign,…
      Article 5 days ago 3 min read NASA Anticipates Lunar Findings From Next-Generation Retroreflector
      Article 6 days ago 3 min read NASA Science Payload to Study Sticky Lunar Dust Challenge
      Article 3 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System

      View the full article
  • Check out these Videos

×
×
  • Create New...