Jump to content

NASA eClips Educator Receives 2024 VAST Science Educator Specialist Award


Recommended Posts

  • Publishers
Posted

2 min read

NASA eClips Educator Receives 2024 VAST Science Educator Specialist Award

On November 14, 2024, NASA eClips team member, Betsy McAllister, was recognized with the prestigious Virginia Association of Science Teachers (VAST) Science Educator Specialist Award at the 2024 VAST Annual Professional Development Institute. McAllister is an educator with Hampton City Schools in Virginia and Educator-in-Residence (EIR) at the National Institute of Aerospace’s Center for Integrative STEM Education (NIA-CISE).

Betsy earned this honor for her significant contributions to Science, Technology, Engineering, and Mathematics (STEM) education, having educated learners in formal and informal settings for over 30 years, 22 of those in the classroom. She taught 5th and 6th grade science, life and physical science, and gifted resource; she also served as a Science Teacher Specialist and STEM Teacher Specialist prior to her current position as EIR. In her EIR role with NIA, she is a key member of the NASA eClips team and works to bring NASA resources into the K-12 classroom while designing and aligning eClips resources with current curricula and pacing. She has been instrumental in creating strong collaborations between NASA and STEM-related organizations with Hampton City Schools and organizing community engagement experiences, such as their annual STEM Exploration Community Event.

In addition to her professional work with students, McAllister brings real-world learning opportunities to the public through volunteer roles as Commissioner with the Hampton Clean City Commission, a Peninsula Master Naturalist, and a Hampton Master Gardener. Congratulations, Betsy!

The NASA eClips project provides educators with standards-based videos, activities, and lessons to increase STEM literacy through the lens of NASA. It is supported by NASA under cooperative agreement award number NNX16AB91A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn

Black background with green leaves overlaid with the VAST logo, wording about the award, and a headshot of Betsy McAllister in a blue sweater.
Betsy McAllister was presented with the Virginia Association of Science Teacher’s Science Educator Specialist Award at the November 2024 VAST Conference.
VAST

Share

Details

Last Updated
Jan 07, 2025
Editor
NASA Science Editorial Team

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Kennedy Space Center Director and charter members of the Florida University Space Research Consortium signed a memorandum of understanding on Jan. 8, 2025. From left: Jennifer Kunz, Associate Director, Technical, Kennedy Space Center; Kelvin Manning, Deputy Director, Kennedy Space Center; Dr. Kent Fuchs, Interim President, University of Florida; Janet Petro, Director, Kennedy Space Center; Jeanette Nuñez, Florida Lieutenant Governor; Dr. Alexander Cartwright, President, University of Central Florida; Dr. Barry Butler, President, Embry-Riddle Aeronautical University. NASA/Kim Shiflett The future of research and technology at NASA’s Kennedy Space Center in Florida is expanding Wednesday, as Kennedy’s center director and charter members in the Florida University Space Research Consortium signed a memorandum of understanding in research and development to assist with missions and contribute to NASA’s Moon to Mars exploration approach.
      Officials from the consortium – designated in 2024 as the state’s official space research entity – NASA leaders, and guests participated in the signing ceremony held at Kennedy, marking a critical milestone in a partnership to advance research, technology development, education, and communication between the spaceport and the state’s growing space industry.
      “Through this agreement, NASA will benefit in new and exciting ways from our longtime partnership with the universities that make Florida shine,” said NASA Administrator Bill Nelson. “As we move deeper into this golden era of space exploration, a new generation of thinkers and leaders will lead the way – thinkers and leaders like the researchers, faculty, and students of the Artemis Generation, whom we are pleased to work with through the consortium.”
      The creation of the consortium was the result of more than a year of effort by leaders at Kennedy, the University of Florida, the University of Central Florida, and Embry-Riddle Aeronautical University. The agreement highlights the partnership and serves as the official start to partnering activities, with Florida now the only state with a university consortium affiliated with one of NASA’s centers.
      Present at the event was Florida Governor Ron DeSantis. “It was great to visit the Space Coast Jan. 8 to announce the Florida University Space Research Consortium—our state’s official space research entity. Home to a thriving aerospace industry and world-class higher education institutions, Florida is the ideal place to launch this initiative. We are primed to lead the nation in developing a blueprint for state-space partnerships into the future.”
      The mission of the consortium is to foster a symbiotic relationship between NASA Kennedy and Florida’s universities to drive innovation in space exploration, research, and technology through academic collaboration, joint projects, and workforce development.
      “The launch of the Florida University Space Research Consortium is a significant milestone for our state’s aerospace sector, bringing together our world-class education system with cutting edge research and development,” said Lieutenant Governor Jeanette Nuñez. “This consortium will undoubtedly further strengthen and deepen Florida’s position as the leader in the global aerospace economy.”
      The memorandum of understanding marks the dawn of a new era of cooperation between the Florida spaceport and the state’s university system, starting with the three charter universities with plans to expand to other state universities interested in participating. The push to enhance research and technological collaboration with universities has been a priority at NASA for years and has seen success at other NASA centers across the country.
      While Kennedy becomes the first NASA center affiliated with a university consortium, recently NASA’s Ames Research Center in California’s Silicon Valley partnered with University of California, Berkeley, on development of the Berkeley Space Center at NASA Research Park, located at Ames. Still in development, the project is envisioned as a 36-acre discovery and innovation hub to include educational spaces, labs, offices, student housing, and a new conference center. More recently, NASA’s Johnson Space Center in Houston teamed up with Texas A&M University to break ground on a building that will become a testing laboratory for apparatuses in development for NASA’s Moon to Mars plans. In attendance for the groundbreaking was Kennedy Space Center Director Janet Petro, who was one of the signatories on the agreement.
      NASA’s Kennedy Space Center Director Janet Petro signs a memorandum of understanding between Kennedy Space Center and the Florida University Space Research Consortium on Jan. 8, 2025. NASA/Kim Shiflett “This agreement is a shining example of what it looks like when we link arms and create a space for the whole to be greater than all our parts,” said Petro. “This symbiotic partnership makes way for collaborative research opportunities and increased exposure to advanced technology, significantly enhancing NASA’s research output in fields such as aerospace engineering, materials science, robotics, and environmental science, all of which are necessary for long-term human exploration as we learn to live and work deeper into space than ever before.”
      For more information about NASA Kennedy, visit:
      https://www.nasa.gov/kennedy
      View the full article
    • By NASA
      Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read
      A Rover Retrospective: Turning Trials to Triumphs in 2024
      A look back at a few Mars 2020 mission highlights of 2024  
      Perseverance’s past year operating on the surface of Mars was filled with some of the mission’s highest highs, but also some of its greatest challenges. True to its name and its reputation as a mission that overcomes challenges, Perseverance and its team of scientists and engineers turned trials to triumphs in yet another outstanding year for the mission. There’s a lot to celebrate about Perseverance’s past year on Mars, but here are three of my top mission moments this year, in the order in which they happened. 
      1. SHERLOC’s cover opens 
      NASA’s Mars Perseverance rover captured this image of its SHERLOC instrument (Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals), showing the cover mechanism of SHERLOC’s Autofocus and Context Imager camera (ACI) in a nearly open configuration. The rover acquired this image using its Left Mastcam-Z camera — one of a pair of cameras located high on the rover’s mast — on March 3, 2024 (sol 1079, or Martian day 1,079 of the Mars 2020 mission), at the local mean solar time of 12:18:41. NASA/JPL-Caltech/ASU In early January the SHERLOC instrument’s cover mechanism stopped responding during a routine attempt to acquire data on a rock outcrop in the Margin unit. After six weeks of team diagnostics, the SHERLOC instrument was declared offline and many of us feared that the instrument had met its end. In early March, the team made significant progress in driving the cover to a more open position. Then, to everyone’s surprise, the SHERLOC cover moved unexpectedly to a nearly completely open position during a movement of the arm on sol 1077. I remember staring in wonder at the image of the cover (taken on sol 1079), feeling real optimism for the first time that SHERLOC could be recovered. The team spent the next few months developing a new plan for operating SHERLOC with its cover open, and the instrument was declared back online at the end of June.  
      2. A potential biosignature at Cheyava Falls  
      NASA’s Perseverance Mars rover captured this image of “leopard spots” on a rock nicknamed “Cheyava Falls” on July 18, 2024 — sol 1212. or the 1,212th Martian day of the mission. Running the length of the rock are large white calcium sulfate veins. Between those veins are bands of material whose reddish color suggests the presence of hematite, one of the minerals that gives Mars its distinctive rusty hue. Scientists are particularly interested in the millimeter-size, irregularly shaped light patches on the central reddish band (from lower left to upper right of the image) that resemble leopard spots. Perseverance captured the image using a camera called WATSON (Wide Angle Topographic Sensor for Operations and eNgineering), part of the SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) instrument suite located on the end of Perseverance’s robotic arm. NASA/JPL-Caltech/MSSS No top list would be complete without Perseverance’s discovery in July 2024 of a potential biosignature in the form of sub-millimeter-scale “leopard spots” at an outcrop called Cheyava Falls. These features, which formed during chemical reactions within the rock, have dark rims and light cores and occur together with organic carbon. On Earth, these chemical reactions are often driven by or associated with microbes. Although we can’t say for sure that microbes were involved in the formation of the leopard spots at Cheyava Falls, this question can be answered when Perseverance’s samples are returned to Earth. In the meantime, this rock remains one of the most compelling rocks discovered on Mars.  
      3. Arrival at Witch Hazel Hill 
      NASA’s Mars Perseverance rover acquired this image at the top of Witch Hazel Hill, of the South Arm and Minnie Hill outcrops. Perseverance used its Left Navigation Camera (Navcam) — which also aids in driving — located high on the rover’s mast. The rover captured the image on Dec. 16, 2024 (sol 1359, or Martian day 1,359 of the Mars 2020 mission), at the local mean solar time of 13:26:38. NASA/JPL-Caltech Closing out 2024 on a high note, in mid-December Perseverance arrived at the top of a sequence of rock exposed on the western edge of the Jezero crater rim called Witch Hazel Hill. These rocks pre-date the formation of Jezero crater and could be amongst the oldest rocks exposed on the surface of Mars. These rocks have the potential to tell us about a period of solar system history not well-preserved on our own planet Earth, and they may record important clues about the early history and habitability of Mars. Witch Hazel Hill first caught my attention during landing site selection several years ago, when we were debating the merits of landing Perseverance in Jezero versus sites outside the crater. At the time, this area seemed just out of reach for a Jezero-focused mission, so I’m thrilled that the rover is now exploring this site!   
      The Mars 2020 mission had its ups and downs and a fair share of surprises during 2024, but we are looking ahead to 2025 with excitement, as Perseverance continues to explore and sample the Jezero crater rim.
      Written by Katie Stack Morgan, Mars 2020 Deputy Project Scientist
      Share








      Details
      Last Updated Jan 08, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4416-4417: New Year, New Clouds


      Article


      17 hours ago
      2 min read Sols 4402-4415: Rover Decks and Sequence Calls for the Holidays


      Article


      1 week ago
      4 min read Sols 4398-4401: Holidays Ahead, Rocks Under the Wheels


      Article


      3 weeks ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By NASA
      Credit: NASA NASA has selected Columbus Technologies and Services Inc. of El Segundo, California, to provide electrical and electronic engineering support to the agency’s Goddard Space Flight Center in Greenbelt, Maryland.
      The Electrical Systems Engineering Services IV is a cost-plus-award-fee indefinite-delivery/indefinite-quantity contract with a maximum estimated value of $1.1 billion. The base period of performance begins on April 9 and runs for five years.
      Work performed as part of the contract will assist various technical divisions at NASA Goddard with electrical and electronic responsibilities. These divisions include the Electrical Engineering Division, Instrument Systems and Technology Division, Software Engineering Division, and Mission Engineering and Systems Analysis Division. The contractor also will help manage the development of space flight, airborne, and ground system hardware, including design, testing, and fabrication.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Share
      Details
      Last Updated Jan 08, 2025 LocationNASA Headquarters Related Terms
      Goddard Space Flight Center View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Radiation Tolerant Computer, or RadPC, payload undergoes final checkout at Montana State University in Bozeman, which leads the payload project. RadPC is one of 10 NASA payloads set to fly aboard the next delivery for NASA’s CLPS (Commercial Lunar Payload Services) initiative in 2025. RadPC prototypes previously were tested aboard the International Space Station and Earth-orbiting satellites, but the technology demonstrator will undergo its biggest trial in transit to the Moon – passing through the Earth’s Van Allen radiation belts – and during its roughly two-week mission on the lunar surface. Photo courtesy Firefly Aerospace Onboard computers are critical to space exploration, aiding nearly every spacecraft function from propulsion and navigation systems to life support technology, science data retrieval and analysis, communications, and reentry.
      But computers in space are susceptible to ionizing solar and cosmic radiation. Just one high-energy particle can trigger a so-called “single event effect,” causing minor data errors that lead to cascading malfunctions, system crashes, and permanent damage. NASA has long sought cost-effective solutions to mitigate radiation effects on computers to ensure mission safety and success.
      Enter the Radiation Tolerant Computer (RadPC) technology demonstration, one of 10 NASA payloads set to fly aboard the next lunar delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative. RadPC will be carried to the Moon’s surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
      Developed by researchers at Montana State University in Bozeman, RadPC aims to demonstrate computer recovery from faults caused by single event effects of ionizing radiation. The computer is designed to gauge its own real-time state of health by employing redundant processors implemented on off-the-shelf integrated circuits called field programmable gate arrays. These tile-like logic blocks are capable of being easily replaced following a confirmed ionizing particle strike. In the event of a radiation strike, RadPC’s patented recovery procedures can identify the location of the fault and repair the issue in the background.
      As an added science benefit, RadPC carries three dosimeters to measure varying levels of radiation in the lunar environment with each tuned to different sensitivity levels. These dosimeters will continuously measure the interaction between Earth’s magnetosphere and the solar wind during its journey to the Moon. It will also provide detailed radiation information about Blue Ghost’s lunar landing site at Mare Crisium, which could help to safeguard future Artemis astronauts.
      “This is RadPC’s first mission out into the wild, so to speak,” said Dennis Harris, who manages the payload for the CLPS initiative at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “The RadPC CLPS payload is an exciting opportunity to verify a radiation-tolerant computer option that could make future Moon to Mars missions safer and more cost-effective.”
      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. Marshall manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
      T
      Learn more about. CLPS and Artemis at:
      https://www.nasa.gov/clps
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Jan 08, 2025 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
      3 min read Electrodynamic Dust Shield Heading to Moon on Firefly Lander
      Article 2 hours ago 3 min read NASA Lander to Test Vacuum Cleaner on Moon for Sample Collection
      Article 5 hours ago 2 min read NASA Names Adam Schlesinger as Commercial Lunar Payload Services Project Manager
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Lunar Planet Vac, or LPV, is one of 10 payloads set to be carried to the Moon by the Blue Ghost 1 lunar lander in 2025. LPV is designed to efficiently collect and transfer lunar soil from the surface to other science and analysis instruments on the Moon.Photo courtesy Firefly Aerospace Among all the challenges of voyaging to and successfully landing on other worlds, the effective collection and study of soil and rock samples cannot be underestimated.
      To quickly and thoroughly collect and analyze samples during next-generation Artemis Moon missions and future journeys to Mars and other planetary bodies, NASA seeks a paradigm shift in techniques that will more cost-effectively obtain samples, conduct in situ testing with or without astronaut oversight, and permit real-time sample data return to researchers on Earth.
      That’s the planned task of an innovative technology demonstration called Lunar PlanetVac (LPV), one of 10 NASA payloads flying aboard the next lunar delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative. LPV will be carried to the surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
      Developed by Honeybee Robotics, a Blue Origin company of Altadena, California, LPV is a pneumatic, compressed gas-powered sample acquisition and delivery system – essentially, a vacuum cleaner that brings its own gas. It’s designed to efficiently collect and transfer lunar soil from the surface to other science instruments or sample return containers without reliance on gravity. Secured to the Blue Ghost lunar lander, LPV’s sampling head will use pressurized gas to stir up the lunar regolith, or soil, creating a small tornado. If successful, material from the dust cloud it creates then will be funneled into a transfer tube via the payload’s secondary pneumatic jets and collected in a sample container. The entire autonomous operation is expected to take just seconds and maintains planetary protection protocols. Collected regolith – including particles up to 1 cm in size, or roughly 0.4 inches – will be sieved and photographed inside the sample container with the findings transmitted back to Earth in real time.
      The innovative approach to sample collection and in situ testing could prove to be a game-changer, said Dennis Harris, who manages the LPV payload for the CLPS initiative at NASA’s Marshall Space Flight Center in Huntsville, Alabama.
      “There’s no digging, no mechanical arm to wear out requiring servicing or replacement – it functions like a vacuum cleaner,” Harris said. “The technology on this CLPS payload could benefit the search for water, helium, and other resources and provide a clearer picture of in situ materials available to NASA and its partners for fabricating lunar habitats and launch pads, expanding scientific knowledge and the practical exploration of the solar system every step of the way.”
      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
      Learn more about. CLPS and Artemis at:
      https://www.nasa.gov/clps
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Jan 08, 2025 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
      5 min read NASA’s LEXI Will Provide X-Ray Vision of Earth’s Magnetosphere
      A NASA X-ray imager is heading to the Moon as part of NASA’s Artemis campaign,…
      Article 5 days ago 3 min read NASA Anticipates Lunar Findings From Next-Generation Retroreflector
      Article 6 days ago 3 min read NASA Science Payload to Study Sticky Lunar Dust Challenge
      Article 3 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System

      View the full article
  • Check out these Videos

×
×
  • Create New...