Members Can Post Anonymously On This Site
NASA to Cover Two Spacewalks, Hold Preview News Conference
-
Similar Topics
-
By NASA
Kennedy Space Center Director and charter members of the Florida University Space Research Consortium signed a memorandum of understanding on Jan. 8, 2025. From left: Jennifer Kunz, Associate Director, Technical, Kennedy Space Center; Kelvin Manning, Deputy Director, Kennedy Space Center; Dr. Kent Fuchs, Interim President, University of Florida; Janet Petro, Director, Kennedy Space Center; Jeanette Nuñez, Florida Lieutenant Governor; Dr. Alexander Cartwright, President, University of Central Florida; Dr. Barry Butler, President, Embry-Riddle Aeronautical University. NASA/Kim Shiflett The future of research and technology at NASA’s Kennedy Space Center in Florida is expanding Wednesday, as Kennedy’s center director and charter members in the Florida University Space Research Consortium signed a memorandum of understanding in research and development to assist with missions and contribute to NASA’s Moon to Mars exploration approach.
Officials from the consortium – designated in 2024 as the state’s official space research entity – NASA leaders, and guests participated in the signing ceremony held at Kennedy, marking a critical milestone in a partnership to advance research, technology development, education, and communication between the spaceport and the state’s growing space industry.
“Through this agreement, NASA will benefit in new and exciting ways from our longtime partnership with the universities that make Florida shine,” said NASA Administrator Bill Nelson. “As we move deeper into this golden era of space exploration, a new generation of thinkers and leaders will lead the way – thinkers and leaders like the researchers, faculty, and students of the Artemis Generation, whom we are pleased to work with through the consortium.”
The creation of the consortium was the result of more than a year of effort by leaders at Kennedy, the University of Florida, the University of Central Florida, and Embry-Riddle Aeronautical University. The agreement highlights the partnership and serves as the official start to partnering activities, with Florida now the only state with a university consortium affiliated with one of NASA’s centers.
Present at the event was Florida Governor Ron DeSantis. “It was great to visit the Space Coast Jan. 8 to announce the Florida University Space Research Consortium—our state’s official space research entity. Home to a thriving aerospace industry and world-class higher education institutions, Florida is the ideal place to launch this initiative. We are primed to lead the nation in developing a blueprint for state-space partnerships into the future.”
The mission of the consortium is to foster a symbiotic relationship between NASA Kennedy and Florida’s universities to drive innovation in space exploration, research, and technology through academic collaboration, joint projects, and workforce development.
“The launch of the Florida University Space Research Consortium is a significant milestone for our state’s aerospace sector, bringing together our world-class education system with cutting edge research and development,” said Lieutenant Governor Jeanette Nuñez. “This consortium will undoubtedly further strengthen and deepen Florida’s position as the leader in the global aerospace economy.”
The memorandum of understanding marks the dawn of a new era of cooperation between the Florida spaceport and the state’s university system, starting with the three charter universities with plans to expand to other state universities interested in participating. The push to enhance research and technological collaboration with universities has been a priority at NASA for years and has seen success at other NASA centers across the country.
While Kennedy becomes the first NASA center affiliated with a university consortium, recently NASA’s Ames Research Center in California’s Silicon Valley partnered with University of California, Berkeley, on development of the Berkeley Space Center at NASA Research Park, located at Ames. Still in development, the project is envisioned as a 36-acre discovery and innovation hub to include educational spaces, labs, offices, student housing, and a new conference center. More recently, NASA’s Johnson Space Center in Houston teamed up with Texas A&M University to break ground on a building that will become a testing laboratory for apparatuses in development for NASA’s Moon to Mars plans. In attendance for the groundbreaking was Kennedy Space Center Director Janet Petro, who was one of the signatories on the agreement.
NASA’s Kennedy Space Center Director Janet Petro signs a memorandum of understanding between Kennedy Space Center and the Florida University Space Research Consortium on Jan. 8, 2025. NASA/Kim Shiflett “This agreement is a shining example of what it looks like when we link arms and create a space for the whole to be greater than all our parts,” said Petro. “This symbiotic partnership makes way for collaborative research opportunities and increased exposure to advanced technology, significantly enhancing NASA’s research output in fields such as aerospace engineering, materials science, robotics, and environmental science, all of which are necessary for long-term human exploration as we learn to live and work deeper into space than ever before.”
For more information about NASA Kennedy, visit:
https://www.nasa.gov/kennedy
View the full article
-
By NASA
Credit: NASA NASA has selected Columbus Technologies and Services Inc. of El Segundo, California, to provide electrical and electronic engineering support to the agency’s Goddard Space Flight Center in Greenbelt, Maryland.
The Electrical Systems Engineering Services IV is a cost-plus-award-fee indefinite-delivery/indefinite-quantity contract with a maximum estimated value of $1.1 billion. The base period of performance begins on April 9 and runs for five years.
Work performed as part of the contract will assist various technical divisions at NASA Goddard with electrical and electronic responsibilities. These divisions include the Electrical Engineering Division, Instrument Systems and Technology Division, Software Engineering Division, and Mission Engineering and Systems Analysis Division. The contractor also will help manage the development of space flight, airborne, and ground system hardware, including design, testing, and fabrication.
For information about NASA and agency programs, visit:
https://www.nasa.gov
-end-
Tiernan Doyle
Headquarters, Washington
202-358-1600
tiernan.doyle@nasa.gov
Share
Details
Last Updated Jan 08, 2025 LocationNASA Headquarters Related Terms
Goddard Space Flight Center View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The Radiation Tolerant Computer, or RadPC, payload undergoes final checkout at Montana State University in Bozeman, which leads the payload project. RadPC is one of 10 NASA payloads set to fly aboard the next delivery for NASA’s CLPS (Commercial Lunar Payload Services) initiative in 2025. RadPC prototypes previously were tested aboard the International Space Station and Earth-orbiting satellites, but the technology demonstrator will undergo its biggest trial in transit to the Moon – passing through the Earth’s Van Allen radiation belts – and during its roughly two-week mission on the lunar surface. Photo courtesy Firefly Aerospace Onboard computers are critical to space exploration, aiding nearly every spacecraft function from propulsion and navigation systems to life support technology, science data retrieval and analysis, communications, and reentry.
But computers in space are susceptible to ionizing solar and cosmic radiation. Just one high-energy particle can trigger a so-called “single event effect,” causing minor data errors that lead to cascading malfunctions, system crashes, and permanent damage. NASA has long sought cost-effective solutions to mitigate radiation effects on computers to ensure mission safety and success.
Enter the Radiation Tolerant Computer (RadPC) technology demonstration, one of 10 NASA payloads set to fly aboard the next lunar delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative. RadPC will be carried to the Moon’s surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
Developed by researchers at Montana State University in Bozeman, RadPC aims to demonstrate computer recovery from faults caused by single event effects of ionizing radiation. The computer is designed to gauge its own real-time state of health by employing redundant processors implemented on off-the-shelf integrated circuits called field programmable gate arrays. These tile-like logic blocks are capable of being easily replaced following a confirmed ionizing particle strike. In the event of a radiation strike, RadPC’s patented recovery procedures can identify the location of the fault and repair the issue in the background.
As an added science benefit, RadPC carries three dosimeters to measure varying levels of radiation in the lunar environment with each tuned to different sensitivity levels. These dosimeters will continuously measure the interaction between Earth’s magnetosphere and the solar wind during its journey to the Moon. It will also provide detailed radiation information about Blue Ghost’s lunar landing site at Mare Crisium, which could help to safeguard future Artemis astronauts.
“This is RadPC’s first mission out into the wild, so to speak,” said Dennis Harris, who manages the payload for the CLPS initiative at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “The RadPC CLPS payload is an exciting opportunity to verify a radiation-tolerant computer option that could make future Moon to Mars missions safer and more cost-effective.”
Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. Marshall manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
T
Learn more about. CLPS and Artemis at:
https://www.nasa.gov/clps
Alise Fisher
Headquarters, Washington
202-358-2546
Alise.m.fisher@nasa.gov
Headquarters, Washington
202-358-2546
Alise.m.fisher@nasa.gov
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
corinne.m.beckinger@nasa.gov
Share
Details
Last Updated Jan 08, 2025 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
3 min read Electrodynamic Dust Shield Heading to Moon on Firefly Lander
Article 2 hours ago 3 min read NASA Lander to Test Vacuum Cleaner on Moon for Sample Collection
Article 5 hours ago 2 min read NASA Names Adam Schlesinger as Commercial Lunar Payload Services Project Manager
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
4 min read
Astronaut Set to Patch NASA’s X-ray Telescope Aboard Space Station
NASA astronaut Nick Hague will install patches to the agency’s NICER (Neutron star Interior Composition Explorer) X-ray telescope on the International Space Station as part of a spacewalk scheduled for Jan. 16. Hague, along with astronaut Suni Williams, will also complete other tasks during the outing.
NICER will be the first NASA observatory repaired on-orbit since the last servicing mission for the Hubble Space Telescope in 2009.
Hague and other astronauts, including Don Pettit, who is also currently on the space station, rehearsed the NICER patch procedures in the NBL (Neutral Buoyancy Laboratory), a 6.2-million-gallon indoor pool at NASA’s Johnson Space Center in Houston, in 2024.
NASA astronaut Nick Hague holds a patch for NICER (Neutron star Interior Composition Explorer) at the end of a T-handle tool during a training exercise on May 16, 2024, in the NBL (Neutral Buoyancy Laboratory) at NASA’s Johnson Space Center in Houston. NASA/NBL Dive Team Astronaut Nick Hague removes a patch from the caddy using a T-handle tool during a training exercise in the NBL at NASA Johnson on May 16, 2024. The booklet on his wrist has a schematic of the NICER telescope and where the patches will go.NASA/NBL Dive Team “We use the NBL to mimic, as much as possible, the conditions astronauts will experience while preforming a task during a spacewalk,” said Lucas Widner, a flight controller at KBR and NASA Johnson who ran the NICER NBL sessions. “Most projects outside the station focus on maintenance and upgrades to components like solar panels. It’s been exciting for all of us to be part of getting a science mission back to normal operations.”
From its perch near the space station’s starboard solar array, NICER studies the X-ray sky, including erupting galaxies, black holes, superdense stellar remnants called neutron stars, and even comets in our solar system.
But in May 2023, NICER developed a “light leak.” Sunlight began entering the telescope through several small, damaged areas in the telescope’s thin thermal shields. During the station’s daytime, the light reaches the X-ray detectors, saturating sensors and interfering with NICER’s measurements of cosmic objects. The mission team altered their daytime observing strategy to mitigate the effect.
UAE (United Arab Emirates) astronaut Sultan Alneyadi captured this view of NICER from a window in the space station’s Poisk Mini-Research Module 2 in July 2023. Photos like this one helped the NICER team map the damage to the telescope’s thermal shields.NASA/Sultan Alneyadi Some of NICER’s damaged thermal shields (circled) are visible in this photograph.NASA/Sultan Alneyadi The team also developed a plan to cover the largest areas of damage using wedge-shaped patches. Hague will slide the patches into the telescope’s sunshades and lock them into place.
“We designed the patches so they could be installed either robotically or by an astronaut,” said Steve Kenyon, NICER’s mechanical engineering lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “They’re installed using a tool called a T-handle that the astronauts are already familiar with.”
The NBL contains life-size mockups of sections of the space station. Under the supervision of a swarm of scuba divers, a pair of astronauts rehearse exiting and returning through an airlock, traversing the outside of the station, and completing tasks.
For the NICER repair, the NBL team created a full-scale model of NICER and its surroundings near the starboard solar array. Hague, Pettit, and other astronauts practiced taking the patches out of their caddy, inserting them into the sunshades, locking them into place, and verifying they were secure.
The task took just under an hour each time, which included the time astronauts needed to travel to NICER, set up their tools, survey the telescope for previously undetected damage, complete the repair, and clean up their tools.
Practice runs also provided opportunities for the astronauts to troubleshoot how to position themselves so they could reach NICER without touching it too often and for flight controllers to identify safety concerns around the repair.
Astronaut Don Pettit simulates taking pictures of the NICER telescope mockup during a training exercise in the NBL at NASA Johnson on May 16, 2024.NASA/NBL Dive Team Astronaut Don Pettit removes a patch from the caddy during a training exercise in the NBL at NASA Johnson on May 16, 2024.NASA/NBL Dive Team Being fully submerged in a pool is not the same as being in space, of course, so some issues that arose were “pool-isms.” For example, astronauts sometimes drifted upward while preparing to install the patches in a way unlikely to happen in space.
Members of the NICER team, including Kenyon and the mission’s principal investigator, Keith Gendreau at NASA Goddard, supported the NBL practice runs. They helped answer questions about the physical aspects of the telescope, as well as science questions from the astronauts and flight controllers. NICER is the leading source of science results on the space station.
“It was awesome to watch the training sessions and be able to debrief with the astronauts afterward,” Gendreau said. “There isn’t usually a lot of crossover between astrophysics science missions and human spaceflight. NICER will be the first X-ray telescope serviced by astronauts. It’s been an exciting experience, and we’re all looking forward to the spacewalk where it will all come together.”
The NICER telescope is an Astrophysics Mission of Opportunity within NASA’s Explorers Program, which provides frequent flight opportunities for world-class scientific investigations from space utilizing innovative, streamlined, and efficient management approaches within the heliophysics and astrophysics science areas. NASA’s Space Technology Mission Directorate supported the SEXTANT component of the mission, demonstrating pulsar-based spacecraft navigation.
Download high-resolution images and videos of NICER at NASA’s Scientific Visualization Studio. By Jeanette Kazmierczak
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share
Details
Last Updated Jan 08, 2025 Related Terms
Astrophysics Black Holes Goddard Space Flight Center International Space Station (ISS) ISS Research Johnson Space Center Neutron Stars NICER (Neutron star Interior Composition Explorer) Pulsars The Universe View the full article
-
By NASA
Technicians have successfully integrated NASA’s Nancy Grace Roman Space Telescope’s payload – the telescope, instrument carrier, and two instruments – to the spacecraft that will deliver the observatory to its place in space and enable it to function while there.
“With this incredible milestone, Roman remains on track for launch, and we’re a big step closer to unveiling the cosmos as never before,” said Mark Clampin, acting deputy associate administrator for the Science Mission Directorate at NASA Headquarters in Washington. “It’s been fantastic to watch the team’s progress throughout the integration phase. I look forward to Roman’s transformative observations.”
Technicians recently integrated the payload – telescope, instrument carrier, and two instruments – for NASA’s Nancy Grace Roman Space Telescope in the big clean room at the agency’s Goddard Space Flight Center in Greenbelt, Md. NASA/Chris Gunn The newly joined space hardware will now undergo extensive testing. The first test will ensure each major element operates as designed when integrated with the rest of the observatory and establish the hardware’s combined performance. Then environmental tests will subject the payload to the electromagnetic, vibration, and thermal vacuum environments it will experience during launch and on-orbit operations. These tests will ensure the hardware and the launch vehicle will not interfere with each other when operating, verify the communications antennas won’t create electromagnetic interference with other observatory hardware, shake the assembly to make sure it will survive extreme vibration during launch, assess its performance across its expected range of operating temperatures, and make sure the instruments and mirrors are properly optically aligned.
Meanwhile, Roman’s deployable aperture cover will be integrated with the outer barrel assembly, and then the solar panels will be added before spring. Then the structure will be joined to the payload and spacecraft this fall.
The Roman mission remains on track for completion by fall 2026 and launch no later than May 2027.
Virtually tour an interactive version of the telescope By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940
Share
Details
Last Updated Jan 08, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
Nancy Grace Roman Space Telescope Goddard Space Flight Center The Universe Explore More
4 min read NASA Successfully Integrates Roman Mission’s Telescope, Instruments
Article 4 weeks ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn
Article 6 months ago 4 min read NASA’s Roman Space Telescope’s ‘Exoskeleton’ Whirls Through Major Test
Article 3 months ago N
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.