Jump to content

How US-Indian NISAR Satellite Will Offer Unique Window on Earth


Recommended Posts

  • Publishers
Posted

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

artist’s concept depicts the NISAR satellite orbiting Earth over Antarctica
An equal collaboration between NASA and the Indian Space Research Organisation, NISAR will offer unprecedented insights into Earth’s constantly changing land and ice surfaces using synthetic aperture radar technology. The spacecraft, depicted here in an artist’s concept, will launch from India.
NASA/JPL-Caltech

A Q&A with the lead U.S. scientist of the mission, which will track changes in everything from wetlands to ice sheets to infrastructure damaged by natural disasters.

The upcoming U.S.-India NISAR (NASA-ISRO Synthetic Aperture Radar) mission will observe Earth like no mission before, offering insights about our planet’s ever-changing surface.

The NISAR mission is a first-of-a-kind dual-band radar satellite that will measure land deformation from earthquakes, landslides, and volcanoes, producing data for science and disaster response. It will track how much glaciers and ice sheets are advancing or retreating and it will monitor growth and loss of forests and wetlands for insights on the global carbon cycle.

As diverse as NISAR’s impact will be, the mission’s winding path to launch — in a few months’ time — has also been remarkable. Paul Rosen, NISAR’s project scientist at NASA’s Jet Propulsion Laboratory in Southern California, has been there at every step. He recently discussed the mission and what sets it apart.

Paul Rosen
NISAR Project Scientist Paul Rosen of NASA’s Jet Propulsion Laboratory first traveled to India in late 2011 to discuss collaboration with ISRO scientists on an Earth-observing radar mission. NASA and ISRO signed an agreement in 2014 to develop NISAR.
NASA/JPL-Caltech

How will NISAR improve our understanding of Earth?

The planet’s surfaces never stop changing — in some ways small and subtle, and in other ways monumental and sudden. With NISAR, we’ll measure that change roughly every week, with each pixel capturing an area about half the size of a tennis court. Taking imagery of nearly all Earth’s land and ice surfaces this frequently and at such a small scale — down to the centimeter — will help us put the pieces together into one coherent picture to create a story about the planet as a living system.

What sets NISAR apart from other Earth missions?

NISAR will be the first Earth-observing satellite with two kinds of radar — an L-band system with a 10-inch (25-centimeter) wavelength and an S-band system with a 4-inch (10-centimeter) wavelength.

Whether microwaves reflect or penetrate an object depends on their wavelength. Shorter wavelengths are more sensitive to smaller objects such as leaves and rough surfaces, whereas longer wavelengths are more reactive with larger structures like boulders and tree trunks.

So NISAR’s two radar signals will react differently to some features on Earth’s surface. By taking advantage of what each signal is or isn’t sensitive to, researchers can study a broader range of features than they could with either radar on its own, observing the same features with different wavelengths.

Is this new technology?

The concept of a spaceborne synthetic aperture radar, or SAR, studying Earth’s processes dates to the 1970s, when NASA launched Seasat. Though the mission lasted only a few months, it produced first-of-a-kind images that changed the remote-sensing landscape for decades to come.

It also drew me to JPL in 1981 as a college student: I spent two summers analyzing data from the mission. Seasat led to NASA’s Shuttle Imaging Radar program and later to the Shuttle Radar Topography Mission.

What will happen to the data from the mission?

Our data products will fit the needs of users across the mission’s science focus areas — ecosystems, cryosphere, and solid Earth — plus have many uses beyond basic research like soil-moisture and water resources monitoring.

We’ll make the data easily accessible. Given the volume of the data, NASA decided that it would be processed and stored in the cloud, where it’ll be free to access.

How did the ISRO partnership come about?

We proposed DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice), an L-band satellite, following the 2007 Decadal Survey by the National Academy of Sciences. At the time, ISRO was exploring launching an S-band satellite. The two science teams proposed a dual-band mission, and in 2014 NASA and ISRO agreed to partner on NISAR.

Since then, the agencies have been collaborating across more than 9,000 miles (14,500 kilometers) and 13 time zones. Hardware was built on different continents before being assembled in India to complete the satellite. It’s been a long journey — literally.

More About NISAR

The NISAR mission is an equal collaboration between NASA and ISRO and marks the first time the two agencies have cooperated on hardware development for an Earth-observing mission. Managed for the agency by Caltech, JPL leads the U.S. component of the project and is providing the mission’s L-band SAR. NASA is also providing the radar reflector antenna, the deployable boom, a high-rate communication subsystem for science data, GPS receivers, a solid-state recorder, and payload data subsystem.

Space Applications Centre Ahmedabad, ISRO’s lead center for payload development, is providing the mission’s S-band SAR instrument and is responsible for its calibration, data processing, and development of science algorithms to address the scientific goals of the mission. U R Rao Satellite Centre in Bengaluru, which leads the ISRO components of the mission, is providing the spacecraft bus. The launch vehicle is from ISRO’s Vikram Sarabhai Space Centre, launch services are through ISRO’s Satish Dhawan Space Centre, and satellite mission operations are by ISRO Telemetry Tracking and Command Network. National Remote Sensing Centre in Hyderabad is primarily responsible for S-band data reception, operational products generation, and dissemination.

To learn more about NISAR, visit:

https://nisar.jpl.nasa.gov

News Media Contacts

Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov

2025-001

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      An electron microscopy images of multicellular magnetotactic bacteria that featured on the covers of the 2022 edition of The ISME Journal. The image was produced by Schaible and co-workers under the group’s NASA awards.Roland Hatzenpichler / Montana State University In a recent study, NASA-supported researchers gained new insight into the lives of bacteria that survive by grouping together as if they were a multi-cellular organism. The organisms in the study are the only bacteria known to do this in this way, and studying them could help astrobiologists explain important steps in the evolution of life on Earth.
      The organisms in the study are known as ‘multicellular magnetotactic bacteria,’ or MMB. Being magnetotactic means that MMB are part of a select group of bacteria that orient their movement based on Earth’s magnetic field using tiny ‘compass needles’ in their cells. As if that wasn’t special enough, MMB also live bunched up in collections of cells that are considered by some scientists to exhibit ‘obligate’ multicellularity, which is the trait the new study is focused on.
      In biology, obligate means that an organism requires something for survival. In this case, it means that single cells of MMB cannot survive on their own. Instead, cells live as a consortium of multiple cells that behave in many ways like a single multicellular organism. This requirement to live together means that when MMB reproduce, they do so by replicating all the cells in the consortium at once, doubling the total number of cells. This large group of cells then splits into two identical consortia.
      Electron microscopy image and cartoon of a MMB consortium, highlighting its characteristics features that includes a hollow space at the center of the cell consortium.George Shaible et al. PLOS Biology 2024 MMB are the only example of bacteria that are known to live like this. Many other bacteria clump together as simple aggregates of single cells. For instance, cyanobacteria clump together in colonies and form structures like stromatolites or biofilms that are visible to the naked eye. However, unlike MMB, these cyanobacteria can also survive as single, individual cells.
      In the new study, scientists have revealed even more complexity in the relationships between MMB cells. First, contrary to long-held assumptions, individual cells within MMB consortia are not genetically identical, they differ slightly in their genetic blueprint. Further, cells within a consortium exhibit different and complementary behavior in terms of their metabolism. Each cell in an MMB consortium has a role that contributes to the survival of the entire group. This behavior is similar to how individual cells within multicellular organisms behave. For example, human bodies are made up of tens of trillions of cells. These cells differentiate into specific cell types with different functions. Bone cells are not the same as blood cells. Fat cells that store energy are different from the nerve cells that store and transmit information. Each cell has a role to play, and together they make up a single living body. 
      The proposed life cycle of multicellular magnetotactic bacteria (MMB). Credit: George ShcaibleGeorge Schaible The evolution of multicellularity is one of the major transitions in the history life on our planet and had profound effects on Earth’s biosphere. In the wake of its appearance, life developed novel strategies for survival that led to entirely new ecosystems. As the only example of bacteria that exhibit obligate multicellularity, MMB provide an important example of possible mechanisms behind this profound step in life’s evolutionary history on Earth.
      The study, “Multicellular magnetotactic bacteria are genetically heterogeneous consortia with metabolically differentiated cells,” was published in PLOS Biology. The work was supported through the NASA Exobiology program and the Future Investigators in NASA Earth and Space Science and Technology (FINESST) program.
      For more information on NASA Astrobiology, visit:
      https://astrobiology.nasa.gov
      -end-
      News Media Contacts
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Explore More
      6 min read NASA’s Curiosity Rover Detects Largest Organic Molecules Found on Mars
      Article 1 week ago 5 min read NASA’s Apollo Samples Yield New Information about the Moon
      Article 2 months ago 5 min read NASA Study Shows Ferns Facilitate Recovery from Environmental Disaster 
      NASA-supported scientists have shown how ferns might help ecosystems recover from disasters.
      Article 3 months ago View the full article
    • By European Space Agency
      Launched just seven months ago, ESA’s Arctic Weather Satellite has been proving how the New Space approach can accelerate the development of missions capable of delivering detailed temperature and humidity profiles for short-term weather forecasts.
      Moreover, the impact of this tiny prototype satellite goes even further – its measuring instrument has been recognised as able to provide data that’s on a par with traditional large missions.
      View the full article
    • By European Space Agency
      Image: The Copernicus Sentinel-2 mission captures the striking landscape surrounding the Waza National Park in Cameroon. View the full article
    • By European Space Agency
      Two spacecraft flying as one – that is the goal of European Space Agency’s Proba-3 mission. Earlier this week, the eclipse-maker moved a step closer to achieving that goal, as both spacecraft aligned with the Sun, maintaining their relative position for several hours without any control from the ground.
      View the full article
    • By NASA
      Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 11 min read
      The Earth Observer Editor’s Corner: January–March 2025
      NASA’s Earth Observing fleet continues to age gracefully. While several new missions have joined the fleet in the past year, scientists and engineers work to extend the life of existing missions and maximize their science along the way. The crowning example is the first Earth Observing System (EOS) Flagship mission, Terra, which celebrated a quarter-century in orbit on December 18, 2024.
      Terra, continues to collect daily morning Earth observations using five different instruments: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and the Earth’s Radiant Energy System (CERES), Multi-angle Imaging SpectroRadiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS), and Measurement of Pollution in the Troposphere (MOPITT). Collectively, these observations have established a robust satellite record of global scientific processes to track changes in temperature, glaciers, clouds, vegetation, land-use, air quality, and natural hazards such as hurricanes, wildfires, and volcanic eruptions.
      Originally designed for a six-year prime mission, Terra continues to deliver data used by emergency managers, researchers, and modelers over a quarter-of-a-century later. On December 18th, 2024, NASA celebrated the 25th anniversary of Terra’s launch with a celebration at the Goddard Space Flight Center (GSFC) Visitor’s Center. NASA Senior management [from NASA Headquarters and GSFC] as well as other key figures from Terra’s long history gave brief remarks and perspectives on Terra’s development and achievements. To read a review of the celebration, see “Celebrating 25 Years of Terra.”
      Terra-related sessions (poster and oral) during the Fall American Geophysical Union (AGU) meeting were well-attended. The Terra team took advantage of the meeting to have a celebratory anniversary dinner that included attendees representing each of the five instruments.
      Another mission to recently reach a longevity milestone is NASA’s Orbiting Carbon Observatory-2 (OCO-2), which celebrated 10 years in space last summer. OCO-2, which launched on July 2, 2014, from the Vandenburg Air Force (now Space Force) Base in California, was originally designed as a pathfinder mission to measure carbon dioxide (CO2) with the precision and accuracy needed to quantify where, when, and how the Earth inhales and exhales this important greenhouse gas seasonally. OCO-2 was part of the international Afternoon Constellation, or “A-Train,” which also included Aqua, Aura, CloudSat, and CALIPSO, as well as international partner missions.
      Since its launch, OCO-2 data have revealed unprecedented insights into how the carbon cycle operates – from observing the impact and recovery of tropical land and ocean ecosystems during El Niño events to revealing the outsized impacts of extreme events, such as floods, droughts, and fires on ecosystem health and functioning. Researchers from around the world use OCO-2 data, opening new opportunities for understanding the response of the carbon cycle to human-driven perturbations, such as the impact of COVID lockdowns on atmospheric CO2 and improved quantification of emissions from large power plants and cities.
      OCO-2 also maps vegetation fluorescence, which shows promise as a reliable early warning indicator of flash drought. During photosynthesis, plants “leak” unused photons, producing a faint glow known as solar-induced fluorescence (SIF). The stronger the fluorescence, the more CO2 a plant is taking from the atmosphere to power its growth. Ancillary SIF measurements from OCO-2 will help scientists better predict flash droughts, and understand how these impact carbon emissions.
      Ten years into the mission, OCO-2 has become the gold standard for CO2 measurements from space. The spacecraft and instrument continue to perform nominally, producing data leading to new scientific discoveries.
      OCO–3, built from spare parts during the build of OCO-2 and launched to the International Space Station (ISS) in 2019, also celebrated a milestone, marking five years in orbit on May 4, 2024. While the follow-on has the same instrument sensitivity and makes essentially the same measurements as OCO-2, the vantage point on the ISS as opposed to OCO-2’s polar orbit and the use of a new pointing mirror assembly (PMA) results in significant day-to-day spatial and temporal sampling differences that allows CO2 tracking for diurnal variability. In addition, the flexible PMA system allows for a much more dynamic observation-mode schedule.
      Further out in space, about 1 million mi (~1.1 million km) from Earth, orbiting the “L1” Lagrange point between Earth and Sun, the Deep Space Climate Observatory (DSCOVR) celebrated the 10th anniversary of its launch on February 11, 2025. The two NASA Earth observing instruments on DSCOVR are the Earth Polychromatic Camera (EPIC) and National Institute of Standards and Technology (NIST) Advanced Radiometer [NISTAR].
      The 10th DSCOVR EPIC NISTAR Science Team Meeting was held October 16–18, 2024 at Goddard Space Flight Center. Former U.S. Vice President Al Gore opened the meeting with remarks that focused on remote sensing and the future of Earth observations. Following Gore’s remarks, DSCOVR mission leadership and representatives from GSFC and the National Oceanic and Atmospheric Administration (NOAA) gave presentations on DSCOVR operations, EPIC calibration, and NISTAR Status and Science.
      The meeting provided an opportunity for participants to learn the status of DSCOVR’s Earth-observing instruments, the status of recently released Level-2 (geophysical) data products, and the resulting science. As more people use DSCOVR data worldwide, the science team hopes to hear from users and team members at its next meeting. The latest updates from the mission can be found on the EPIC website. For more details, see the Summary of the 10th DSCOVR EPIC and NISTAR Science Team Meeting.
      Flying in the space between satellites and ground-based observations, NASA’s Airborne Science Program operates a fleet of aircraft, unpiloted aerial vehicles, and even kites to study Earth and space science. Since 1987, a highly modified McDonnell Douglas DC-8 aircraft has been a mainstay of ASP’s fleet ­­– see Photo 1. The aircraft, located at NASA’s Armstrong Flight Research Center (AFRC) in California, flew countless missions as a science laboratory, producing science data for the national and global scientific communities. NASA decided to retire the venerable DC-8 aircraft, which made its last science flight in April 2024. The DC-8 is being replaced with a similarly refurbished Boeing 777 aircraft, which will be even more capable than the DC-8 and is located at the NASA Langley Research Center (LaRC).
      The NASA History Office and NASA Earth Science Division cohosted a workshop, titled “Contributions of the DC-8 to Earth System Science at NASA,” on October 24–25, 2024 at the Mary W. Jackson NASA Headquarters (HQ) Building in Washington, DC – for more details on the DC-8 event, see the article The NASA DC-8 Retires: Reflections on its Contributions to Earth System Science.
      Photo 1. NASA’s DC-8 flying laboratory flew Earth science missions from 1987 to 2024. Expert maintenance allowed the aircraft to conduct research on six continents and study ice fields on the seventh, Antarctica. Image Credit: Lori Losey/NASA There are also updates from three recent NASA field campaigns – where ground observations are timed and coordinated with aircraft flights (often at more than one altitude) and with satellite overpasses to gain a comprehensive (i.e., multilayered, multiscale) picture of the atmosphere over a certain area. 
      The Westcoast & Heartland Hyperspectral Microwave Sensor Intensive Experiment (WHyMSIE) campaign was held from October 17- November 18, 2024. Serving as a future NASA planetary boundary-layer (PBL) mission prototype, WHyMSIE aimed to capture a wide variety of thermodynamic, moisture, and PBL regimes across a variety of surface types. WHyMSIE was an initial step towards an integrated and affordable PBL observing system of systems, with multiple observing nodes – i.e., space, suborbital, and ground – from passive and active sensors to enable a comprehensive and coherent picture of essential PBL variables and hydrometeors that is not possible with any single sensor, observational approach, or scale. As a partnership between NASA and NOAA, this field campaign flew a first-of-its-kind hyperspectral microwave airborne measurements (CoSMIR-H) that was complemented by other passive (thermal emission, solar reflectance) and active (lidar, radar) sensors flying onboard the NASA ER-2 (AFRC) and G-III (LaRC), with coordination over a variety of ground-based sensor facilities.
      The GSFC Lidar Observation and Validation Experiment (GLOVE) was conducted in February 2025 at Edwards Air Force Base, California – see photo 2. GLOVE flew the Cloud Physics Lidar (CPL), Roscoe lidar, enhanced MODIS Airborne Simulator (eMAS) imaging scanner, and Cloud Radar System (CRS) on the ER-2 to validate NASA ICESat-2 atmospheric data products and validate ESA’s recently launched EarthCARE lidar, radar, and spectrometer products.
      NASA’s Earth Science Division FireSense project focuses on delivering NASA’s unique Earth science and technological capabilities to operational agencies, striving to address challenges in US wildland fire management. Together with agency, academic, and private partners, FireSense completed an airborne campaign in a wildfire smoke-impacted airshed in Missoula, MT on August 27–29, 2024. During the three-day campaign, a NASA Uninhabited Aerial System (UAS) team conducted eight data-collection flights, partnering these launches with weather balloon launches.
      FireSense uses airborne campaigns to evaluate capabilities and technologies to support decision making in wildland fire management and air quality forecasting. Targeted data collection produces better forecasts and more successful technology transfer to wildland fire operations. In the future, the FireSense Program will coordinate two airborne campaigns for spring 2025 at Geneva State Forest, Alabama and Kennedy Space Center located within Merritt Island National Wildlife Refuge, Florida. Both 2025 campaigns will incorporate data collection before, during, and after prescribed fire operations. Beyond NASA, the campaign works in close partnership with the U.S. Forest Service, National Weather Service, U.S. Fish and Wildlife Service, Department of Defense, as well as partners in academia and the private sector. For more information on FireSense’s most recent campaign in Montana see the Editor’s Corner supplemental summary of “The FireSense Project.”
      Photo 2. NASA personnel stand in front of theNASA ER-2 at Edwards Air Force Base, California, during the GSFC Lidar Observation and Validation Experiment (GLOVE) in February 2025. Image credit: John Yorks/NASA Congratulations to Jack Kaye, Associate Director for research with the Earth Science Division within NASA’s Science Mission Directorate, who has received the William T. Pecora Award for his vision and creative leadership in multidisciplinary Earth science research, as well as spurring advancements in the investigator community, supporting development of sensors, and shaping NASA satellite and aircraft missions and research programs at the highest levels. To read more about this accomplishment, see “Kaye Honored with Pecora Award.”
      On the outreach front, AGU returned to Washington, DC, for its annual meeting from December 9–14, 2024. NASA continued to uphold its long-standing tradition as an AGU partner and exhibitor, leveraging the meeting as an opportunity to share the agency’s cutting-edge research, data, and technology with the largest collection of Earth and planetary science professionals in the world. Many of the estimated 25,000 students, scientists, and industry personnel who attended the conference visited the NASA Science exhibit, interacting with NASA subject matter experts and listening to Hyperwall presentations throughout the week.
      As the final event in a busy calendar of annual scientific conferences, AGU is often an opportunity for NASA scientists to publish findings from the previous year and set goals for the year ahead. The agency’s robust portfolio of missions and programs will continue to set new records, such as NASA’s Parker Solar Probe pass of the Sun, and conduct fundamental research in Earth and space science. To read more about AGU 2024, see the article: AGU 2024: NASA Science on Display in the Nation’s Capital.
      Ending on a somber note, we recently posted three notable obituaries. Each of these individuals made significant contributions to EOS history, which are highlighted in the In Memoriam articles linked below.  
      Jeff Dozier, an environmental scientist, snow hydrologist, researcher, academic, and former EOS Project Scientist, died on November 17, 2024. Jeff embraced remote sensing with satellites to measure snow properties and energy balance. As a Project Scientist with the Earth Observing System Data and Information System (EOSDIS), he contributed to the design and management of very large information systems that would impact spatial modeling and environmental informatics.
      Berrien Moore, Dean of the College of Atmospheric and Geographic Sciences at the University of Oklahoma (OU), died on December 17, 2024. Berrien served in several roles with NASA, including as a committee member and later chair of the organization’s Space and Earth Science Advisory Committee, Chair of the Earth Observing System Payload Advisory Committee, member and Chair of NASA’s Earth Science and Applications Committee, and member of the NASA Advisory Council. Berrien received NASA’s highest civilian honor, the Distinguished Public Service Medal, for outstanding service and the NOAA Administrator’s Recognition Award.
      Pierre Morel, the first director of the World Climate Research Programme (WCRP) and founding member of WCRP’s Global Energy and Water Exchanges (GEWEX) Core project, died on December 10, 2024. Pierre’s work played an integral role in the development of tools used to study the atmosphere, many of which are still active today. Pierre was the recipient of the 2008 Alfred Wegener Medal & Honorary Membership for his outstanding contributions to geophysical fluid dynamics, his leadership in the development of climate research, and the applications of space observation to meteorology and the Earth system science.
      Steve Platnick
      EOS Senior Project Scientist
      Share








      Details
      Last Updated Mar 20, 2025 Related Terms
      Earth Science View the full article
  • Check out these Videos

×
×
  • Create New...