Jump to content

Recommended Posts

Posted
A video taken by an airline passenger reportedly during a commercial flight over the UK shows what seem to be two figures standing on a layer of clouds. 

figures%20cloud%20%20(1).jpg

The intriguing footage has sparked a wave of speculation online. While some viewers suggest the figures could be supernatural beings, closer analysis of the footage reveals additional shapes emerging through the clouds as the camera pans from left to right, image below.

figures%20cloud%20%20(2).jpg

This has led others to theorize that the "figures" might actually be exhaust stacks or other tall structures releasing steam, breaking through a fog layer and creating an illusion of human-like forms. 

Rather than supernatural entities, the phenomenon is more likely an example of pareidolia, a psychological tendency to perceive familiar shapes, such as faces or figures, in random patterns.

 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 Min Read NASA’s Webb Captures Neptune’s Auroras For First Time
      At the left, an enhanced-color image of Neptune from NASA’s Hubble Space Telescope. At the right, that image is combined with data from NASA’s James Webb Space Telescope. Credits:
      NASA, ESA, CSA, STScI, Heidi Hammel (AURA), Henrik Melin (Northumbria University), Leigh Fletcher (University of Leicester), Stefanie Milam (NASA-GSFC) Long-sought auroral glow finally emerges under Webb’s powerful gaze
      For the first time, NASA’s James Webb Space Telescope has captured bright auroral activity on Neptune. Auroras occur when energetic particles, often originating from the Sun, become trapped in a planet’s magnetic field and eventually strike the upper atmosphere. The energy released during these collisions creates the signature glow.
      In the past, astronomers have seen tantalizing hints of auroral activity on Neptune, for example, in the flyby of NASA’s Voyager 2 in 1989. However, imaging and confirming the auroras on Neptune has long evaded astronomers despite successful detections on Jupiter, Saturn, and Uranus. Neptune was the missing piece of the puzzle when it came to detecting auroras on the giant planets of our solar system.
      “Turns out, actually imaging the auroral activity on Neptune was only possible with Webb’s near-infrared sensitivity,” said lead author Henrik Melin of Northumbria University, who conducted the research while at the University of Leicester. “It was so stunning to not just see the auroras, but the detail and clarity of the signature really shocked me.”
      The data was obtained in June 2023 using Webb’s Near-Infrared Spectrograph. In addition to the image of the planet, astronomers obtained a spectrum to characterize the composition and measure the temperature of the planet’s upper atmosphere (the ionosphere). For the first time, they found an extremely prominent emission line signifying the presence of the trihydrogen cation (H3+), which can be created in auroras. In the Webb images of Neptune, the glowing aurora appears as splotches represented in cyan.
      Image A:
      Neptune’s Auroras – Hubble and Webb
      At the left, an enhanced-color image of Neptune from NASA’s Hubble Space Telescope. At the right, that image is combined with data from NASA’s James Webb Space Telescope. The cyan splotches, which represent auroral activity, and white clouds, are data from Webb’s Near-Infrared Spectrograph (NIRSpec), overlayed on top of the full image of the planet from Hubble’s Wide Field Camera 3. NASA, ESA, CSA, STScI, Heidi Hammel (AURA), Henrik Melin (Northumbria University), Leigh Fletcher (University of Leicester), Stefanie Milam (NASA-GSFC) “H3+ has a been a clear signifier on all the gas giants — Jupiter, Saturn, and Uranus — of auroral activity, and we expected to see the same on Neptune as we investigated the planet over the years with the best ground-based facilities available,” explained Heidi Hammel of the Association of Universities for Research in Astronomy, Webb interdisciplinary scientist and leader of the Guaranteed Time Observation program for the Solar System in which the data were obtained. “Only with a machine like Webb have we finally gotten that confirmation.”
      The auroral activity seen on Neptune is also noticeably different from what we are accustomed to seeing here on Earth, or even Jupiter or Saturn. Instead of being confined to the planet’s northern and southern poles, Neptune’s auroras are located at the planet’s geographic mid-latitudes — think where South America is located on Earth.
      This is due to the strange nature of Neptune’s magnetic field, originally discovered by Voyager 2 in 1989 which is tilted by 47 degrees from the planet’s rotation axis. Since auroral activity is based where the magnetic fields converge into the planet’s atmosphere, Neptune’s auroras are far from its rotational poles.
      The ground-breaking detection of Neptune’s auroras will help us understand how Neptune’s magnetic field interacts with particles that stream out from the Sun to the distant reaches of our solar system, a totally new window in ice giant atmospheric science.
      From the Webb observations, the team also measured the temperature of the top of Neptune’s atmosphere for the first time since Voyager 2’s flyby. The results hint at why Neptune’s auroras remained hidden from astronomers for so long.
      “I was astonished — Neptune’s upper atmosphere has cooled by several hundreds of degrees,” Melin said. “In fact, the temperature in 2023 was just over half of that in 1989.” 
      Through the years, astronomers have predicted the intensity of Neptune’s auroras based on the temperature recorded by Voyager 2. A substantially colder temperature would result in much fainter auroras. This cold temperature is likely the reason that Neptune’s auroras have remained undetected for so long. The dramatic cooling also suggests that this region of the atmosphere can change greatly even though the planet sits over 30 times farther from the Sun compared to Earth.
      Equipped with these new findings, astronomers now hope to study Neptune with Webb over a full solar cycle, an 11-year period of activity driven by the Sun’s magnetic field. Results could provide insights into the origin of Neptune’s bizarre magnetic field, and even explain why it’s so tilted.
      “As we look ahead and dream of future missions to Uranus and Neptune, we now know how important it will be to have instruments tuned to the wavelengths of infrared light to continue to study the auroras,” added Leigh Fletcher of Leicester University, co-author on the paper. “This observatory has finally opened the window onto this last, previously hidden ionosphere of the giant planets.”
      These observations, led by Fletcher, were taken as part of Hammel’s Guaranteed Time Observation program 1249. The team’s results have been published in Nature Astronomy.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      Read the research results published in Nature Astronomy.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hannah Braun- hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Maryland
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Science
      Henrik Melin (Northumbria University)
      Related Information
      View more: Webb images of Neptune
      Watch: Visualization of Neptune’s tilted magnetic axis
      Learn more : about Neptune
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      About Neptune
      About the Solar System
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Neptune



      Neptune Stories



      Our Solar System


      Share








      Details
      Last Updated Mar 25, 2025 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Goddard Space Flight Center Neptune Planetary Science Planets Science & Research The Solar System View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Double Asteroid Redirection Test required extreme precision in mission planning to achieve its mission of impacting an asteroid. The founders of Continuum Space worked on astrodynamics relating to this mission, which they used to inform their product.NASA Planning space missions is a very involved process, ensuring orbits are lined up and spacecraft have enough fuel is imperative to the long-term survival of orbital assets. Continuum Space Systems Inc. of Pasadena, California, produces a cloud-based platform that gives mission planners everything they need to certify that their space resources can accomplish their goals. 

      Continuum’s story begins at NASA’s Jet Propulsion Laboratory in Southern California. Loic Chappaz, the company’s co-founder, started at JPL as an intern working on astrodynamics related to NASA’s Double Asteroid Redirection Test. There he met Leon Alkalai, a JPL technical fellow who spent his 30-year career at the center planning deep space missions. After Alkalai retired from NASA, he founded Mandala Space Ventures, a startup that explored several avenues of commercial space development. Chappaz soon became Mandala’s first employee, but to plan their future, Mandala’s leadership began thinking about the act of planning itself. 

      Because the staff had decades of combined experience at JPL, they knew the center had the building blocks for the software they needed. After licensing several pieces of software from JPL, the company began building planning systems that were highly adaptable to any space mission they could come up with. Mandala eventually evolved into a venture firm that incubated space-related startups. However, because Mandala had invested considerably in developing mission-planning tools, further development could be performed by a new company, and Continuum was fully spun off from Mandala in 2021. 

      Continuum’s platform includes several features for mission planners, such as plotting orbital maneuvers and risk management evaluations. Some of these are built upon software licensed from the Jet Propulsion Laboratory.Continuum Space Systems Inc. Continuum’s tools are designed to take a space mission from concept to completion. There are three different components to their “mission in a box” — design, build and test, and mission operations. The base of these tools are several pieces of software developed at NASA. As of 2024, several space startups have begun planning missions with Continuum’s NASA-inspired software, as well as established operators of satellite constellations. From Continuum to several startups, NASA technologies continue to prove a valuable foundation for the nation’s space economy.  
      Read More Share
      Details
      Last Updated Mar 25, 2025 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read NASA Expertise Helps Record all the Buzz
      Article 2 weeks ago 2 min read What is a NASA Spinoff? We Asked a NASA Expert: Episode 53
      Article 3 weeks ago 3 min read NASA Partners with US Patent and Trademark Office to Advance Technology Transfer
      Article 3 months ago Keep Exploring Discover Related Topics
      Planetary Defense – DART
      NASA’s Double Asteroid Redirection Test (DART), built and managed by the Johns Hopkins Applied Physics Laboratory (APL) for NASA’s Planetary…
      Jet Propulsion Laboratory – News
      Science Missions
      Solar System
      View the full article
    • By NASA
      On March 23, 1965, the United States launched the Gemini III spacecraft with astronauts Virgil “Gus” Grissom and John Young aboard, America’s first two-person spaceflight. Grissom earned the honor as the first person to enter space twice and Young as the first member of the second group of astronauts to fly in space. During their three-orbit flight they carried out the first orbital maneuvers of a crewed spacecraft, a critical step toward demonstrating rendezvous and docking. Grissom and Young brought Gemini 3 to a safe splashdown in the Atlantic Ocean. Their ground-breaking mission led the way to nine more successful Gemini missions in less than two years to demonstrate the techniques required for a Moon landing. Gemini 3 marked the last spaceflight controlled from Cape Kennedy, that function shifting permanently to a new facility in Houston. 

      In one of the first uses of the auditorium at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, managers announce the prime and backup Gemini III crews. NASA NASA astronauts Virgil “Gus” Grissom and John Young, the Gemini III prime crew. NASA Grissom, foreground, and Young in their capsule prior to launch.NASA On April 13, 1964, just five days after the uncrewed Gemini I mission, in the newly open auditorium at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Director Robert Gilruth introduced the Gemini III crew to the press. NASA assigned Mercury 4 veteran Grissom and Group 2 astronaut Young as the prime crew, with Mercury 8 veteran Walter Schirra and Group 2 astronaut Thomas Stafford serving as their backups. The primary goals of Project Gemini included proving the techniques required for the Apollo Program to fulfil President John F. Kennedy’s goal of landing a man on the Moon and returning him safely to Earth before the end of the 1960s. Demonstrating rendezvous and docking between two spacecraft ranked as a high priority for Project Gemini.  

      Liftoff of Gemini III.NASA The uncrewed Gemini I and II missions validated the spacecraft’s design, reliability, and heat shield, clearing the way to launch Gemini III with a crew. On March 23, 1965, after donning their new Gemini spacesuits, Grissom and Young rode the transfer van to Launch Pad 19 at Cape Kennedy in Florida. They rode the elevator to their Gemini spacecraft atop its Titan II rocket where technicians assisted them in climbing into the capsule. At 9:24 a.m. EST, the Titan’s first stage engines ignited, and Gemini III rose from the launch pad. 

      The Mission Control Center at Cape Kennedy in Florida during Gemini III, controlling a human spaceflight for the final time.NASA The Mission Control Center at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, monitoring the Gemini III mission.NASA Five and a half minutes after launch, the Titan II’s second stage engine cut off and the spacecraft separated to begin its orbital journey. Grissom became the first human to enter space a second time. While engineers monitored the countdown from the Launch Pad 19 blockhouse, once in orbit flight controllers in the Mission Control Center at the Cape took over. Controllers in the new Mission Control Center at the Manned Spacecraft Center, now the Johnson Space Center in Houston, staffed consoles and monitored the mission in a backup capacity. Beginning with Gemini IV, control of all American human spaceflights shifted permanently to the Houston facility. 
      Gemini III entered an orbit of 100 miles by 139 miles above the Earth. Near the end of the first orbit, while passing over Texas, Grissom and Young fired their spacecraft’s thrusters for one minute, 14 seconds. “They appear to be firing good,” said Young, confirming the success of the maneuver. The change in velocity adjusted their orbit to 97 miles by 105 miles. A second burn 45 minutes later altered the orbital inclination by 0.02 degrees. Another task for the crew involved testing new food and packaging developed for Gemini. As an off-the-menu item, Young had stowed a corned beef on rye sandwich in his suit pocket before flight, and both he and Grissom took a bite before stowing it away, concerned about crumbs from the sandwich floating free in the cabin.
      Shortly after splashdown, Gemini III astronaut Virgil “Gus” Grissom exits the spacecraft as crewmate John Young waits in the life raft. NASA Sailors hoist the Gemini III spacecraft aboard the prime recovery ship U.S.S. Intrepid.NASA Young, left, and Grissom stand with their spacecraft aboard Intrepid. NASA Near the end of their third revolution, Grissom and Young prepared for the retrofire burn to bring them out of orbit. They oriented Gemini III with its blunt end facing forward and completed a final orbital maneuver to lower the low point of their orbit to 45 miles, ensuring reentry even if the retrorockets failed to fire. They jettisoned the rearmost adapter section, exposing the retrorockets that fired successfully, bringing the spacecraft out of orbit. They jettisoned the retrograde section, exposing Gemini’s heat shield. Minutes later, they encountered the upper layers of Earth’s atmosphere at 400,000 feet, and he buildup of ionized gases caused a temporary loss of communication between the spacecraft and Mission Control. At 50,000 feet, Grissom deployed the drogue parachute to stabilize and slow the spacecraft, followed by the main parachute at 10,600 feet. Splashdown occurred in the Atlantic Ocean near Grand Turk Island, about 52 miles short of the planned point, after a flight of 4 hours, 52 minutes, 31 seconds. 
      Gemini III astronauts Virgil “Gus” Grissom, left, and John Young upon their return to Cape Kennedy in Florida. NASA Grissom and Young at the postflight press conference. NASA The welcome home ceremony for Grissom and Young at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston.NASA A helicopter recovered Grissom and Young and delivered them to the deck of the U.S.S. Intrepid, arriving there one hour and 12 minutes after splashdown. On board the carrier, the astronauts received a medical checkup and a telephone call from President Lyndon B. Johnson. The ship sailed to pick up the spacecraft and sailors hoisted it aboard less than three hours after landing. The day after splashdown, Grissom and Young flew to Cape Kennedy for debriefings, a continuation of the medical examinations begun on the carrier, and a press conference. Following visits to the White House, New York, and Chicago, the astronauts returned home to Houston on March 31. The next day, Gilruth welcomed them back to the Manned Spacecraft Center, where in front of the main administration building, workers raised an American flag that Grissom and Young had carried on their mission. That flag flew during every subsequent Gemini mission. 

      During the Gemini III welcome home ceremony in front of the main administration building at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, workers raise an American flag that the astronauts had carried on their mission. NASA
      Explore More
      5 min read 60 Years Ago: Gemini 1 Flies a Successful Uncrewed Test Flight
      Article 12 months ago 6 min read 60 Years Ago: Uncrewed Gemini 2 Paves the Way for the First Crewed Mission
      Article 2 months ago 6 min read Artemis I Mission Control at a Glance
      Article 3 years ago View the full article
    • By USH
      Researchers utilizing publicly available Synthetic Aperture Radar (SAR) data from Capella Space and Umbra have uncovered significant hidden structures within and beneath the CFR Pyramid on the Giza Plateau. The study reveals five distinct "Zed" structures located above what was previously believed to be the pharaoh’s burial chamber, resembling similar formations found in the Khufu Pyramid. These structures are connected by geometric pathways, with additional secondary formations identified through satellite imaging. 
      Source and credit images: The Reese report / The Kafre Research Project.
      Most notably, eight vertically aligned cylindrical structures, arranged in two parallel rows from north to south, extend 648 meters underground. These formations merge into two massive cubic structures, each approximately 80 meters per side. Tomographical analysis indicates that the cylindrical structures function as hollow wells surrounded by descending spiral pathways. 
      Further research suggests that these subterranean formations are not limited to the CFR Pyramid but extend beneath the Khufu and Menkaure pyramids as well, reaching depths of approximately two kilometers. The study marks a groundbreaking advancement in the understanding of the Giza Plateau’s underground complexity, 
      The discoveries surrounding the CFR Pyramid represent just the tip of a vast and complex structure beneath the Giza Plateau.If confirmed, this discovery could challenge mainstream Egyptology’s belief that the pyramids were simply royal tombs. 
        View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
      Hubble Captures a Neighbor’s Colorful Clouds
      This NASA/ESA Hubble Space Telescope image features part of the Small Magellanic Cloud. ESA/Hubble & NASA, C. Murray
      Download this image

      Say hello to one of the Milky Way’s neighbors! This NASA/ESA Hubble Space Telescope image features a scene from one of the closest galaxies to the Milky Way, the Small Magellanic Cloud (SMC). The SMC is a dwarf galaxy located about 200,000 light-years away. Most of the galaxy resides in the constellation Tucana, but a small section crosses over into the neighboring constellation Hydrus.
      Thanks to its proximity, the SMC is one of only a few galaxies that are visible from Earth without the help of a telescope or binoculars. For viewers in the southern hemisphere and some latitudes in the northern hemisphere, the SMC resembles a piece of the Milky Way that has broken off, though in reality it’s much farther away than any part of our own galaxy.
      With its 2.4-meter mirror and sensitive instruments, Hubble’s view of the SMC is far more detailed and vivid than what humans can see. Researchers used Hubble’s Wide Field Camera 3 to observe this scene through four different filters. Each filter permits different wavelengths of light, creating a multicolored view of dust clouds drifting across a field of stars. Hubble’s view, however, is much more zoomed-in than our eyes, allowing it to observe very distant objects. This image captures a small region of the SMC near the center of NGC 346, a star cluster that is home to dozens of massive young stars.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Mar 21, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Magellanic Clouds The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Night Sky Challenge



      Hearing Hubble



      Reshaping Our Cosmic View: Hubble Science Highlights


      View the full article
  • Check out these Videos

×
×
  • Create New...