Jump to content

Astronomers Discover Nearby Spiral Galaxy Hidden Behind the Milky Way


HubbleSite

Recommended Posts

low_STSCI-H-p-9451a-k1340x520.png

An international team of astronomers has uncovered a galaxy in our own cosmic back yard. Though only ten million light-years away (or five times the distance of the Andromeda galaxy - closest assemblage of stars to our Milky Way Galaxy), this newly discovered city of more than 100 billion stars has gone undetected previously because it is hidden from view behind our Milky Way galaxy.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      An international team of astronomers has used the NASA/ESA/CSA James Webb Space Telescope to detect the first brown dwarf candidates outside the Milky Way in the star cluster NGC 602.
      View the full article
    • By NASA
      On Oct. 18, 1989, space shuttle Atlantis took off on its fifth flight, STS-34, from NASA’s Kennedy Space Center (KSC) in Florida. Its five-person crew of Commander Donald E. Williams, Pilot Michael J. McCulley, and Mission Specialists Shannon W. Lucid, Franklin R. Chang-Díaz, and Ellen S. Baker flew a five-day mission that deployed the Galileo spacecraft, managed by NASA’s Jet Propulsion Laboratory in Southern California, to study Jupiter. The astronauts deployed Galileo and its upper stage on their first day in space, sending the spacecraft on its six-year journey to the giant outer planet. Following its arrival at Jupiter in December 1995, Galileo deployed its atmospheric probe while the main spacecraft entered orbit around the planet, studying it in great detail for eight years.

      Left: The STS-34 crew of Mission Specialists Shannon W. Lucid, sitting left, Franklin R. Chang-Díaz, and Ellen S. Baker; Commander Donald E. Williams, standing left, and Pilot Michael J. McCulley. Middle: The STS-34 crew patch. Right: The Galileo spacecraft in Atlantis’ payload bay in preparation for STS-34.
      In November 1988, NASA announced Williams, McCulley, Lucid, Chang-Díaz, and Baker as the STS-34 crew for the flight planned for October 1989. Williams and Lucid, both from the Class of 1978, had each flown once before, on STS-51D in April 1985 and STS-51G in June 1985, respectively. Chang-Díaz, selected in 1980, had flown once before on STS-61C in January 1986, while for McCulley and Baker, both selected in 1984, STS-34 represented their first spaceflight. During their five-day mission, the astronauts planned to deploy Galileo and its Inertial Upper Stage (IUS) on the first flight day. Following the Galileo deployment, the astronauts planned to conduct experiments in the middeck and the payload bay.

      Left: Voyager 2 image of Jupiter. Middle: Galileo as it appeared in 1983. Right: Illustration of Galileo’s trajectory from Earth to Jupiter.
      Following the successful Pioneer and Voyager flyby missions, NASA’s next step to study Jupiter in depth involved an ambitious orbiter and atmospheric entry probe. NASA first proposed the Jupiter Orbiter Probe mission in 1975, and Congress approved it in 1977 for a planned 1982 launch on the space shuttle. In 1978, NASA renamed the spacecraft Galileo after the 17th century Italian astronomer who turned his new telescope toward Jupiter and discovered its four largest moons. Delays in the shuttle program and changes in the upper stage to send Galileo from low Earth orbit on to Jupiter resulted in the slip of its launch to May 1986, when on Atlantis’ STS-61G mission, a Centaur upper stage would send the spacecraft toward Jupiter.
      The January 1986 Challenger accident not only halted shuttle flights for 31 months but also canceled the Centaur as an upper stage for the orbiter. Remanifested onto the less powerful IUS, Galileo would require gravity assist maneuvers at Venus and twice at Earth to reach its destination, extending the transit time to six years. Galileo’s launch window extended from Oct. 12 to Nov. 21, 1989, dictated by planetary alignments required for the gravity assists. During the transit, Galileo had the opportunity to pass by two main belt asteroids, providing the first closeup study of this class of objects. Upon arrival at Jupiter, Galileo would release its probe to return data as it descended through Jupiter’s atmosphere while the main spacecraft would enter an elliptical orbit around the planet, from which it would conduct in depth studies for a minimum of 22 months.

      Left: The Galileo atmospheric probe during preflight processing. Middle: The Galileo orbiter during preflight processing. Right: Space shuttle Atlantis arrives at Launch Pad 39B.
      The Galileo atmospheric probe arrived at KSC on April 17 and the main spacecraft on May 16, following which workers joined the two together for preflight testing. Meanwhile, Atlantis returned to KSC on May 15, following the STS-30 mission that deployed the Magellan spacecraft to Venus. The next day workers towed it into the Orbiter Processing Facility to prepare it for STS-34. In KSC’s Vehicle Assembly Building (VAB), workers began stacking the Solid Rocket Boosters (SRB) on June 15, completing the activity on July 22, and then adding the External Tank (ET) on July 30. Atlantis rolled over to the VAB on Aug. 22 for mating with the ET and SRBs. Galileo, now mated to its IUS, transferred to Launch Pad 39B on Aug. 25, awaiting Atlantis’ arrival four days later.
      The next day, workers placed Galileo into Atlantis’ payload bay and began preparations for the Oct. 12 launch. The Terminal Countdown Demonstration Test took place on Sept. 14-15, with the astronauts participating in the final few hours as on launch day. A faulty computer aboard the IUS threatened to delay the mission, but workers replaced it without impacting the planned launch date. The five-member astronaut crew arrived at KSC Oct. 9 for final preparations for the flight and teams began the countdown for launch. A main engine controller problem halted the countdown at T minus 19 hours. The work required to replace it pushed the launch date back to Oct. 17. On that day, the weather at the pad supported a launch, but clouds and rain at the Shuttle Landing Facility several miles away, and later rain at a Transatlantic (TAL) abort site, violated launch constraints, so managers called a 24-hour scrub. The next day, the weather cooperated at all sites, and other than a brief hold to reconfigure Atlantis’ computers from one TAL site to another, the countdown proceeded smoothly.

      Left: STS-34 astronauts pose following their Sept. 6 preflight press conference. Middle: Liftoff of Atlantis on the STS-34 mission. Right: Controllers in the Firing Room watch Atlantis take to the skies.
      Atlantis lifted off Launch Pad 39B at 12:53 p.m. EDT on Oct. 18. As soon as the shuttle cleared the launch tower, control shifted to the Mission Control Center at NASA’s Johnson Space Center in Houston, where Ascent Flight Director Ronald D. Dittemore and his team of controllers, including astronaut Frank L. Culbertson serving as the capsule communicator, or capcom, monitored all aspects of the launch. Following main engine cutoff, Atlantis and its crew had achieved orbit. Forty minutes later, a firing of the two Orbital Maneuvering System (OMS) engines circularized the orbit at 185 miles. The astronauts removed their bulky Launch and Entry Suits (LES) and prepared Atlantis for orbital operations, including opening the payload bay doors.

      Left: Galileo and its Inertial Upper Stage (IUS) in Atlantis’ payload bay, just before deployment. Middle: Galileo and its IUS moments after deployment. Right: Galileo departs from the shuttle.
      Preparations for Galileo’s deployment began shortly thereafter. In Mission Control, Flight Director J. Milton Heflin and his team, including capcom Michael A. Baker, took over to assist the crew with deployment operations. The astronauts activated Galileo and the IUS, and ground teams began checking out their systems, with the first TV from the mission showing the spacecraft and its upper stage in the payload bay. Lucid raised Galileo’s tilt table first to 29 degrees, McCulley oriented Atlantis to the deployment attitude, then Lucid raised the tilt table to the deploy position of 58 degrees. With all systems operating normally, Mission Control gave the go for deploy.
      Six hours and 20 minutes into the mission, Lucid deployed the Jupiter-bound spacecraft and its upper stage, weighing a combined 38,483 pounds. “Galileo is on its way to another world,” Williams called down. The combination glided over the shuttle’s crew compartment. Williams and McCulley fired the two OMS engines to move Atlantis a safe distance away from the IUS burn that took place one hour after deployment, sending Galileo on its circuitous journey through the inner solar system before finally heading to Jupiter. The primary task of the mission accomplished, the astronauts prepared for their first night’s sleep in space.

      STS-34 crew Earth observation photographs. Left: The Dallas-Ft. Worth Metroplex. Middle left: Jamaica. Middle right: Greece. Right: The greater Tokyo area with Mt. Fuji at upper left.
      For the next three days, the STS-34 astronauts focused their attention on the middeck and payload bay experiments, as well as taking photographs of the Earth. Located in the payload bay, the Shuttle Solar Backscatter Ultraviolet experiment, managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, measured ozone in the Earth’s atmosphere and compared the results with data obtained by weather satellites at the same locations. The comparisons served to calibrate the weather satellite instruments. Baker conducted the Growth Hormone Concentrations and Distributions in Plants experiment, that investigated the effect of the hormone Auxin in corn shoot tissue. Three days into the mission, she placed plant canisters into a freezer to arrest plant growth and for postflight analysis. Chang-Díaz and Lucid had prime responsibility for the Polymer Morphology experiment, developed by the 3M Company. They used a laptop to control experiment parameters as the hardware melted different samples to see the effects of weightlessness. Baker conducted several medical investigations, including studying blood vessels in the retina, changes in leg volume due to fluid shifts, and carotid blood flow.

      Left: The Shuttle Solar Backscatter Ultraviolet experiment in Atlantis’ payload bay. Middle: Ellen S. Baker, right, performs a carotid blood flow experiment on Franklin R. Chang-Díaz. Right: Chang-Díaz describes the Polymer Mixing experiment.

      Left: The STS-34 crew poses on Atlantis’ fight deck. Middle: Atlantis touches down at Edwards Air Force Base in California. Right: The STS-34 astronauts pose in front of Atlantis.
      On Oct. 23, the astronauts awakened for their final day in space. Because of high winds expected at the primary landing site at Edwards Air Force Base (AFB), managers moved the landing up by two revolutions. In preparation for reentry, the astronauts donned their orange LESs and closed the payload bay doors. Williams and McCulley oriented Atlantis into the deorbit attitude, with the OMS engines facing in the direction of travel. Over the Indian Ocean, they fired the two engines for 2 minutes 48 seconds to bring the spacecraft out of orbit. They reoriented the orbiter to fly with its heat shield exposed to the direction of flight as it encountered Earth’s atmosphere at 419,000 feet. The buildup of ionized gases caused by the heat of reentry prevented communications for about 15 minutes but provided the astronauts a great light show. The entry profile differed slightly from the planned one because Atlantis needed to make up 500 miles of cross range since it returned two orbits early. After completing the Heading Alignment Circle turn, Williams aligned Atlantis with the runway, and McCulley lowered the landing gear. Atlantis touched down and rolled to a stop, ending a 4-day 23-hour 39-minute flight, having completed 79 orbits of the Earth. Following postlanding inspections, workers placed Atlantis atop a Shuttle Carrier Aircraft, a modified Boeing-747, and the combination left Edwards on Oct. 28. Following refueling stops at Biggs Army Airfield in Texas and Columbus AFB in Mississippi, Atlantis and the SCA arrived back at KSC on Oct. 29. Workers began to prepare it for its next flight, STS-36 in February 1990.

      Left: An illustration of Galileo in orbit around Jupiter. Right: Galileo’s major mission events, including encounters with Jupiter’s moons during its eight-year orbital study.
      One hour after deployment from Atlantis, the IUS ignited to send Galileo on its six-year journey to Jupiter, with the spacecraft flying free of the rocket stage 47 minutes later. The spacecraft’s circuitous path took it first to Venus on Feb. 10, 1990, back to Earth on Dec. 8, 1990, and again on Dec. 8, 1992, each time picking up velocity from the gravity assist to send it on to the giant planet. Along the way, Galileo also passed by and imaged the main belt asteroids Gaspra and Ida and observed the crash of Comet Shoemaker-Levy 9 onto Jupiter. On Dec. 7, 1995, the probe plummeted through Jupiter’s dense atmosphere, returning data along the way, until it succumbed to extreme pressures and temperatures. Meanwhile, Galileo entered orbit around Jupiter and far exceeded its 22-month primary mission, finally plunging into the giant planet on Sept. 21, 2003, 14 years after leaving Earth. During its 35 orbits around Jupiter, it studied not only the planet but made close observations of many of its moons, especially its four largest ones, Ganymede, Callisto, Europa, and Io.

      Left: Galileo image of could formations on Jupiter. Right: Closeup image of terrain on Europa.
      Of particular interest to many scientists, Galileo made 11 close encounters with icy Europa, coming as close as 125 miles, revealing incredible details about its surface. Based on Galileo data, scientists now believe a vast ocean lies beneath Europa’s icy crust, and heating from inside the moon may produce conditions favorable for supporting life. NASA’s Europa Clipper, launched on Oct. 14, 2024, hopes to expand on Galileo’s observations when it reaches Jupiter in April 2030.
      Enjoy the crew narrated video of the STS-34 mission. Read Williams‘ recollections of the STS-34 mission in his oral history with the JSC History Office.
      Explore More
      12 min read Five Years Ago: First All Woman Spacewalk
      Article 3 days ago 6 min read Cassini Mission: 5 Things to Know About NASA Lewis’ Last Launch
      Article 6 days ago 24 min read NASA Celebrates Hispanic Heritage Month 2024
      Article 1 week ago View the full article
    • By NASA
      Hubble Space Telescope Home Hubble Captures a New View of… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   2 min read
      Hubble Captures a New View of Galaxy M90
      This eye-catching image offers us a new view of the spiral galaxy Messier 90 from the NASA/ESA Hubble Space Telescope. ESA/Hubble & NASA, D. Thilker, J This NASA/ESA Hubble Space Telescope image features the striking spiral galaxy Messier 90 (M90, also NGC 4569), located in the constellation Virgo. In 2019, Hubble released an image of M90 created with Wide Field and Planetary Camera 2 (WFPC2) data taken in 1994, soon after its installation. That WFPC2 image has a distinctive stair-step pattern due to the layout of its sensors. Wide Field Camera 3 (WFC3) replaced WFPC2 in 2009 and Hubble used WFC3 when it turned its aperture to Messier 90 again in 2019 and 2023. That data resulted in this stunning new image, providing a much fuller view of the galaxy’s dusty disk, its gaseous halo, and its bright core.
      The inner regions of M90’s disk are sites of star formation, seen here in red H-alpha light from nebulae. M90 sits among the galaxies of the relatively nearby Virgo Cluster, and its orbit took M90 on a path near the cluster’s center about three hundred million years ago. The density of gas in the inner cluster weighed on M90 like a strong headwind, stripping enormous quantities of gas from the galaxy and creating the diffuse halo we see around it. This gas is no longer available to form new stars in M90, with the spiral galaxy eventually fading as a result.
      M90 is located 55 million light-years from Earth, but it’s one of the very few galaxies getting closer to us. Its orbit through the Virgo cluster has accelerated so much that M90 is in the process of escaping the cluster entirely. By happenstance, it’s moving in our direction. Astronomers have measured other galaxies in the Virgo cluster at similar speeds, but in the opposite direction. As M90 continues to move toward us over billions of years, it will also be evolving into a lenticular galaxy.

      Download this image

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Oct 17, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Science Mission Directorate Spiral Galaxies The Universe Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Messier 90


      This beautiful spiral is expected to evolve into a lenticular galaxy.


      Hubble’s Messier Catalog



      Hubble’s Caldwell Catalog


      View the full article
    • By NASA
      The study of X-ray emission from astronomical objects reveals secrets about the Universe at the largest and smallest spatial scales. Celestial X-rays are produced by black holes consuming nearby stars, emitted by the million-degree gas that traces the structure between galaxies, and can be used to predict whether stars may be able to host planets hospitable to life. X-ray observations have shown that most of the visible matter in the universe exists as hot gas between galaxies and have conclusively demonstrated that the presence of “dark matter” is needed to explain galaxy cluster dynamics, that dark matter dominates the mass of galaxy clusters, and that it governs the expansion of the cosmos.
      X-ray observations also enable us to probe mysteries of the Universe on the smallest scales. X-ray observations of compact objects such as white dwarfs, neutron stars, and black holes allow us to use the Universe as a physics laboratory to study conditions that are orders of magnitude more extreme in terms of density, pressure, temperature, and magnetic field strength than anything that can be produced on Earth. In this astrophysical laboratory, researchers expect to reveal new physics at the subatomic scale by conducting investigations such as probing the neutron star equation of state and testing quantum electrodynamics with observations of neutron star atmospheres. At NASA’s Marshall Space Flight Center, a team of scientists and engineers is building, testing, and flying innovative optics that bring the Universe’s X-ray mysteries into sharper focus.
      A composite X-ray/Optical/Infrared image of the Crab Pulsar. The X-ray image from the Chandra X-ray Observatory (blue and white), reveals exquisite details in the central ring structures and gas flowing out of the polar jets. Optical light from the Hubble Space Telescope (purple) shows foreground and background stars as pinpoints of light. Infrared light from the Spitzer Space Telescope (pink) traces cooler gas in the nebula. Finally, magnetic field direction derived from X-ray polarization observed by the Imaging X-ray Polarimetry Explorer is shown as orange lines. Magnetic field lines: NASA/Bucciantini et al; X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech Unlike optical telescopes that create images by reflecting or refracting light at near-90-degree angles (normal incidence), focusing X-ray optics must be designed to reflect light at very small angles (grazing incidence). At normal incidence, X-rays are either absorbed by the surface of a mirror or penetrate it entirely. However, at grazing angles of incidence, X-rays reflect very efficiently due to an effect called total external reflection.  In grazing incidence, X-rays reflect off the surface of a mirror like rocks skipping on the surface of a pond.
      A classic design for astronomical grazing incidence optics is the Wolter-I prescription, which consists of two reflecting surfaces, a parabola and hyperbola (see figure below). This optical prescription is revolved around the optical axis to produce a full-shell mirror (i.e., the mirror spans the full circumference) that resembles a gently tapered cone. To increase the light collecting area, multiple mirror shells with incrementally larger diameters and a common focus are fabricated and nested concentrically to comprise a mirror module assembly (MMA).
      Focusing optics are critical to studying the X-ray universe because, in contrast to other optical systems like collimators or coded masks, they produce high signal-to-noise images with low background noise. Two key metrics that characterize the performance of X-ray optics are angular resolution, which is the ability of an optical system to discriminate between closely spaced objects, and effective area, which is the light collecting area of the telescope, typically quoted in units of cm2. Angular resolution is typically measured as the half-power diameter (HPD) of a focused spot in units of arcseconds.  The HPD encircles half of the incident photons in a focused spot and measures the sharpness of the final image; a smaller number is better. 
      Schematic of a full-shell Wolter-I X-ray optic mirror module assembly with five concentrically nested mirror shells. Parallel rays of light enter from the left, reflect twice off the reflective inside surface of the shell (first off the parabolic segment and then off the hyperbolic segment), and converge at the focal plane. NASA MSFC NASA Marshall Space Flight Center (MSFC) has been building and flying lightweight, full-shell, focusing X-ray optics for over three decades, always meeting or exceeding angular resolution and effective area requirements. MSFC utilizes an electroformed nickel replication (ENR) technique to make these thin full-shell X-ray optics from nickel alloy.
      X-ray optics development at MSFC began in the early 1990s with the fabrication of optics to support NASA’s Advanced X-ray Astrophysics Facility (AXAF-S) and then continued via the Constellation-X technology development programs. In 2001, MSFC launched a balloon payload that included two modules each with three mirrors, which produced the first focused hard X-ray (>10 keV) images of an astrophysical source by imaging Cygnus X-1, GRS 1915, and the Crab Nebula.  This initial effort resulted in several follow-up missions over the next 12 years, and became known as the High Energy Replicated Optics (HERO) balloon program.
      In 2012, the first of four sounding rocket flights of the Focusing Optics X-ray Solar Imager (FOXSI) flew with MSFC optics onboard, producing the first focused images of the Sun at energies greater than 5 keV. In 2019 the Astronomical Roentgen Telescope X-ray Concentrator (ART-XC) instrument on the Spectr-Roentgen-Gamma Mission launched with seven MSFC-fabricated X-ray MMAs, each containing 28 mirror shells. ART-XC is currently mapping the sky in the 4-30 keV hard X-ray energy range, studying exotic objects like neutron stars in our own galaxy as well as active galactic nuclei, which are spread across the visible universe. In 2021, the Imaging X-ray Polarimetry Explorer (IXPE), flew and is now performing extraordinary science with an MSFC-led team using three, 24-shell MMAs that were fabricated and calibrated in-house.
      Most recently, in 2024, the fourth FOXSI sounding rocket campaign launched with a high-resolution MSFC MMA. The optics achieved 9.5 arcsecond HPD angular resolution during pre-flight test with an expected 7 arcsecond HPD in gravity-free flight, making this the highest angular resolution flight observation made with a nickel-replicated X-ray optic. Currently MSFC is fabricating an MMA for the Rocket Experiment Demonstration of a Soft X-ray (REDSoX) polarimeter, a sounding rocket mission that will fly a novel soft X-ray polarimeter instrument to observe active galactic nuclei. The REDSoX MMA optic will be 444 mm in diameter, which will make it the largest MMA ever produced by MSFC and the second largest replicated nickel X-ray optic in the world.
      Scientists Wayne Baumgartner (left, crouched) and Nick Thomas (left, standing) calibrate an IXPE MMA in the MSFC 100 m Beamline. Scientist Stephen Bongiorno (right) applies epoxy to an IXPE shell during MMA assembly. NASA MSFC The ultimate performance of an X-ray optic is determined by errors in the shape, position, and roughness of the optical surface. To push the performance of X-ray optics toward even higher angular resolution and achieve more ambitious science goals, MSFC is currently engaged in a fundamental research and development effort to improve all aspects of full-shell optics fabrication.
      Given that these optics are made with the Electroformed Nickel Replication technique, the fabrication process begins with creation of a replication master, called the mandrel, which is a negative of the desired optical surface. First, the mandrel is figured and polished to specification, then a thin layer of nickel alloy is electroformed onto the mandrel surface. Next, the nickel alloy layer is removed to produce a replicated optical shell, and finally the thin shell is attached to a stiff holding structure for use.
      Each step in this process imparts some degree of error into the final replicated shell. Research and development efforts at MSFC are currently concentrating on reducing distortion induced during the electroforming metal deposition and release steps. Electroforming-induced distortion is caused by material stress built into the electroformed material as it deposits onto the mandrel. Decreasing release-induced distortion is a matter of reducing adhesion strength between the shell and mandrel, increasing strength of the shell material to prevent yielding, and reducing point defects in the release layer.
      Additionally, verifying the performance of these advanced optics requires world-class test facilities. The basic premise of testing an optic designed for X-ray astrophysics is to place a small, bright X-ray source far away from the optic. If the angular size of the source, as viewed from the optic, is smaller than the angular resolution of the optic, the source is effectively simulating X-ray starlight. Due to the absorption of X-rays by air, the entire test facility light path must be placed inside a vacuum chamber.
      At MSFC, a group of scientists and engineers operate the Marshall 100-meter X-ray beamline, a world-class end-to-end test facility for flight and laboratory X-ray optics, instruments, and telescopes. As per the name, it consists of a 100-meter-long vacuum tube with an 8-meter-long, 3-meter-diameter instrument chamber and a variety of X-ray sources ranging from 0.25 – 114 keV. Across the street sits the X-Ray and Cryogenic Facility (XRCF), a 527-meter-long beamline with an 18-meter-long, 6-meter-diameter instrument chamber. These facilities are available for the scientific community to use and highlight the comprehensive optics development and test capability that Marshall is known for.
      Within the X-ray astrophysics community there exist a variety of angular resolution and effective area needs for focusing optics. Given its storied history in X-ray optics, MSFC is uniquely poised to fulfill requirements for large or small, medium- or high-angular-resolution X-ray optics. To help guide technology development, the astrophysics community convenes once per decade to produce a decadal survey. The need for high-angular-resolution and high-throughput X-ray optics is strongly endorsed by the National Academies of Sciences, Engineering, and Medicine report, Pathways to Discovery in Astronomy and Astrophysics for the 2020s.In pursuit of this goal, MSFC is continuing to advance the state of the art in full-shell optics. This work will enable the extraordinary mysteries of the X-ray universe to be revealed.
      Project Leads
      Dr. Jessica Gaskin and Dr. Stephen Bongiorno, NASA Marshall Space Flight Center (MSFC)
      Sponsoring Organizations
      The NASA Astrophysics Division supports this work primarily through the Internal Scientist Funding Model Direct Work Package and competed solicitations. This work is also supported by the Heliophysics Division through competed solicitations, as well as by directed work from other government entities.
      Share








      Details
      Last Updated Oct 15, 2024 Related Terms
      Astrophysics Astrophysics Division Marshall Astrophysics Marshall Space Flight Center Science-enabling Technology Technology Highlights Explore More
      2 min read Hubble Spots a Grand Spiral of Starbursts


      Article


      4 days ago
      6 min read NASA’s Hubble, New Horizons Team Up for a Simultaneous Look at Uranus


      Article


      6 days ago
      4 min read NASA’s Hubble Watches Jupiter’s Great Red Spot Behave Like a Stress Ball


      Article


      6 days ago
      View the full article
    • By NASA
      Hubble Space Telescope Home Hubble Spots a Grand Spiral of… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   2 min read
      Hubble Spots a Grand Spiral of Starbursts
      The glittering NASA/ESA Hubble Space Telescope image is of the spiral galaxy NGC 5248, also known as Caldwell 45. ESA/Hubble & NASA, F. Belfiore, J. Lee and the PHANGS-HST Team The sparkling scene depicted in this NASA/ESA Hubble Space Telescope image is of the spiral galaxy NGC 5248, located 42 million light-years from Earth in the constellation Boötes. It is also known as Caldwell 45. The Caldwell catalog holds visually interesting celestial objects that are not as commonly observed by amateur astronomers as the more famous Messier objects.
      NGC 5248 is one of the so-called ‘grand design’ spirals, with prominent spiral arms that reach from near the core out through the disk. It also has a faint bar structure at its center, between the inner ends of the spiral arms, which is not quite so obvious in this visible-light portrait from Hubble. Features like these which break the rotational symmetry of a galaxy have a huge influence on how matter moves through it, and eventually its evolution through time. They feed gas from a galaxy’s outer reaches to inner star-forming regions, and even to a galaxy’s central black hole where it can kick-start an active galactic nucleus.
      These flows of gas have shaped NGC 5248 in a big way; it has many bright ‘starburst regions’ of intense star formation spread across its disk, which a population of young stars dominates. The galaxy even has two very active, ring-shaped starburst regions around its nucleus, filled with young clusters of stars. These ‘nuclear rings’ are remarkable enough, but normally a nuclear ring tends to block gas from getting further into the core of a galaxy. NGC 5248 having a second ring inside the first is a marker of just how forceful its flows of matter and energy are! Because the galaxy is relatively nearby, its highly visible starburst regions make the galaxy a target for professional and amateur astronomers alike.

      Download this image

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Oct 10, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies The Universe Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Explore the Night Sky



      Hubble’s Galaxies



      Exploring the Birth of Stars


      View the full article
  • Check out these Videos

×
×
  • Create New...