Jump to content

Idaho Students to Connect with NASA Astronaut Aboard Space Station


Recommended Posts

  • Publishers
Posted
54195496582-6a84f0bcef-k.jpg?w=2048
NASA astronaut and Expedition 72 Flight Engineer Don Pettit points a camera outside a window on the International Space Station’s Poisk module for a sun photography session. (Credit: NASA)

Students from Hawthorne Elementary School in Boise, Idaho, will have the chance to hear NASA astronaut Don Pettit answer their prerecorded science, technology, engineering, and math (STEM) related questions from aboard the International Space Station.

Watch the 20-minute space-to-Earth call at 12:30 p.m. EST Friday, Jan. 10, on NASA+ and learn how to watch NASA content on various platforms, including social media.

Media interested in covering the event must RSVP by 5 p.m., Tuesday, Jan. 7, to

Dan Hollar at dan.hollar@boiseschools.org or 208-854-4064.

For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.

Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.

See videos and lesson plans highlighting space station research at:

https://www.nasa.gov/stemonstation

-end-

Abbey Donaldson
Headquarters, Washington
202-358-1600
Abbey.a.donaldson@nasa.gov

Sandra Jones 
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA/Joel Kowsky The New York-based artist team Geraluz, left, and WERC, right, pose in front of their mural “To the Moon, and Back” with their son Amaru, 5. The community mural was created as part of the reimagined NASA Art Program, which aims to inspire and engage the next generation of explorers – the Artemis Generation – in new and unexpected ways, including through art.
      The NASA Headquarters photo team chose this image as one of their best from 2024. See more of the top 100 from last year on Flickr.
      Image credit: NASA/Joel Kowsky
      View the full article
    • By NASA
      Learn Home NASA eClips Educator Receives… Science Activation Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   2 min read
      NASA eClips Educator Receives 2024 VAST Science Educator Specialist Award
      On November 14, 2024, NASA eClips team member, Betsy McAllister, was recognized with the prestigious Virginia Association of Science Teachers (VAST) Science Educator Specialist Award at the 2024 VAST Annual Professional Development Institute. McAllister is an educator with Hampton City Schools in Virginia and Educator-in-Residence (EIR) at the National Institute of Aerospace’s Center for Integrative STEM Education (NIA-CISE).
      Betsy earned this honor for her significant contributions to Science, Technology, Engineering, and Mathematics (STEM) education, having educated learners in formal and informal settings for over 30 years, 22 of those in the classroom. She taught 5th and 6th grade science, life and physical science, and gifted resource; she also served as a Science Teacher Specialist and STEM Teacher Specialist prior to her current position as EIR. In her EIR role with NIA, she is a key member of the NASA eClips team and works to bring NASA resources into the K-12 classroom while designing and aligning eClips resources with current curricula and pacing. She has been instrumental in creating strong collaborations between NASA and STEM-related organizations with Hampton City Schools and organizing community engagement experiences, such as their annual STEM Exploration Community Event.
      In addition to her professional work with students, McAllister brings real-world learning opportunities to the public through volunteer roles as Commissioner with the Hampton Clean City Commission, a Peninsula Master Naturalist, and a Hampton Master Gardener. Congratulations, Betsy!
      The NASA eClips project provides educators with standards-based videos, activities, and lessons to increase STEM literacy through the lens of NASA. It is supported by NASA under cooperative agreement award number NNX16AB91A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Betsy McAllister was presented with the Virginia Association of Science Teacher’s Science Educator Specialist Award at the November 2024 VAST Conference. VAST Share








      Details
      Last Updated Jan 07, 2025 Editor NASA Science Editorial Team Related Terms
      Science Activation Explore More
      2 min read NASA Workshops Culturally Inclusive Planetary Engagement with Educators


      Article


      5 days ago
      3 min read Astronomy Activation Ambassadors: A New Era


      Article


      1 week ago
      3 min read Integrating Relevant Science Investigations into Migrant Children Education


      Article


      2 months ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Internal view of LignoSat’s structure shows the relationship among wooden panels, aluminum frames, and stainless-steel shafts.Credit: Kyoto University In December 2024, five CubeSats deployed into Earth’s orbit from the International Space Station. Among them was LignoSat, a wooden satellite from JAXA (Japanese Aerospace Exploration Agency) that investigates the use of wood in space. Findings could offer a more sustainable alternative to conventional satellites.
      A previous experiment aboard station exposed three species of wood to the space environment to help researchers determine the best option for LignoSat. The final design used 10 cm long honoki magnolia wood panels assembled with a Japanese wood-joinery method.
      Researchers will use sensors to evaluate strain on the wood and measure its responses to temperature and radiation in space. Geomagnetic levels will also be monitored to determine whether the geomagnetic field can penetrate the body of the wooden satellite and interfere with its technological capabilities. Investigating uses for wood in space could lead to innovative solutions in the future.

      A traditional Japanese wooden joining method, the Blind Miter Dovetail Joint, is used for LignoSat to connect two wooden panels without using glue or nails.Credit: Kyoto University Three CubeSats are deployed from space station, including LignoSat. Keep Exploring Discover More Topics From NASA
      Latest News from Space Station Research
      Space Station Technology Demonstration
      Space Station Research Results
      Space Station Research and Technology Resources
      View the full article
    • By NASA
      This photomontage shows tubes containing samples from Mars, as collected by NASA’s Perseverance Mars rover.  The agency’s Mars Sample Return Program plans to bring these samples back to study them in state-of-the-art facilities on Earth.Credit: NASA/JPL-Caltech/MSSS To maximize chances of successfully bringing the first Martian rock and sediment samples to Earth for the benefit of humanity, NASA announced Tuesday a new approach to its Mars Sample Return Program. The agency will simultaneously pursue two landing architectures, or strategic plans, during formulation, encouraging competition and innovation, as well as cost and schedule savings.
      NASA plans to later select a single path forward for the program, which aims to better understand the mysteries of the universe, and to help determine whether the Red Planet ever hosted life. NASA is expected to confirm the program – and its design – in the second half of 2026.
      “Pursuing two potential paths forward will ensure that NASA is able bring these samples back from Mars with significant cost and schedule saving compared to the previous plan,” said NASA Administrator Bill Nelson. “These samples have the potential to change the way we understand Mars, our universe, and – ultimately – ourselves. I’d like to thank the team at NASA and the strategic review team, led by Dr. Maria Zuber, for their work.”
      In September 2024, the agency accepted 11 studies from the NASA community and industry on how best to return Martian samples to Earth. A Mars Sample Return Strategic Review team was charged with assessing the studies and then recommending a primary architecture for the campaign, including associated cost and schedule estimates.
      “NASA’s rovers are enduring Mars’ harsh environment to collect ground-breaking science samples,” said Nicky Fox, who leads NASA’s Science Mission Directorate. “We want to bring those back as quickly as possible to study them in state-of-the-art facilities. Mars Sample Return will allow scientists to understand the planet’s geological history and the evolution of climate on this barren planet where life may have existed in the past and shed light on the early solar system before life began here on Earth. This will also prepare us to safely send the first human explorers to Mars.”
      During formulation, NASA will proceed with exploring and evaluating two distinct means of landing the payload platform on Mars. The first option will leverage previously flown entry, descent, and landing system designs, namely the sky crane method, demonstrated with the Curiosity and Perseverance missions. The second option will capitalize on using new commercial capabilities to deliver the lander payload to the surface of Mars.
      For both potential options, the mission’s landed platform will carry a smaller version of the Mars Ascent Vehicle. The platform’s solar panels will be replaced with a radioisotope power system that can provide power and heat through the dust storm season at Mars, allowing for reduced complexity.
      The orbiting sample container will hold 30 of the sample tubes containing samples the Perseverance lander has been collecting from the surface of Mars. A redesign of the sample loading system on the lander, which will place the samples into the orbiting sample container, simplifies the backward planetary protection implementation by eliminating the accumulation of dust on the outside of the sample container.
      Both mission options rely on a capture, containment and return system aboard ESA’s (European Space Agency’s) Earth Return Orbiter to capture the orbiting sample container in Mars orbit. ESA is evaluating NASA’s plan.
      For more information on NASA’s exploration of Mars, visit:
      https://www.nasa.gov/mars
      -end-
      Meira Bernstein / Dewayne Washington
      Headquarters, Washington
      202-358-1100
      meira.b.bernstein@nasa.gov / dewayne.a.washington@nasa.gov
      Share
      Details
      Last Updated Jan 07, 2025 LocationNASA Headquarters Related Terms
      Missions Mars Sample Return (MSR) View the full article
    • By NASA
      NASA’s 2024 AI Use Case inventory highlights the agency’s commitment to integrating artificial intelligence in its space missions and operations. The agency’s updated inventory consists of active AI use cases, ranging from AI-driven autonomous space operations, such as navigation for the Perseverance Rover on Mars, to advanced data analysis for scientific discovery. 
      AI Across NASA 
      NASA’s use of AI is diverse and spans several key areas of its missions: 
      Autonomous Exploration and Navigation 
      AEGIS (Autonomous Exploration for Gathering Increased Science): AI-powered system designed to autonomously collect scientific data during planetary exploration.  Enhanced AutoNav for Perseverance Rover: Utilizes advanced autonomous navigation for Mars exploration, enabling real-time decision-making.  MLNav (Machine Learning Navigation): AI-driven navigation tools to enhance movement across challenging terrains.  Perseverance Rover on Mars – Terrain Relative Navigation: AI technology supporting the rover’s navigation across Mars, improving accuracy in unfamiliar terrain.  Mission Planning and Management 
      ASPEN Mission Planner: AI-assisted tool that helps streamline space mission planning and scheduling, optimizing mission efficiency.  AWARE (Autonomous Waiting Room Evaluation): AI system that manages operational delays, improving mission scheduling and resource allocation.  CLASP (Coverage Planning & Scheduling): AI tools for resource allocation and scheduling, ensuring mission activities are executed seamlessly.  Onboard Planner for Mars2020 Rover: AI system that helps the Perseverance Rover autonomously plan and schedule its tasks during its mission.  Environmental Monitoring and Analysis 
      SensorWeb for Environmental Monitoring: AI-powered system used to monitor environmental factors such as volcanoes, floods, and wildfires on Earth and beyond.  Volcano SensorWeb: Similar to SensorWeb, but specifically focused on volcanic activity, leveraging AI to enhance monitoring efforts.  Global, Seasonal Mars Frost Maps: AI-generated maps to study seasonal variations in Mars’ atmosphere and surface conditions.  Data Management and Automation 
      NASA OCIO STI Concept Tagging Service: AI tools that organize and tag NASA’s scientific data, making it easier to access and analyze.  Purchase Card Management System (PCMS): AI-assisted system for streamlining NASA’s procurement processes and improving financial operations.  Aerospace and Air Traffic Control 
      NextGen Methods for Air Traffic Control: AI tools to optimize air traffic control systems, enhancing efficiency and reducing operational costs.  NextGen Data Analytics: Letters of Agreement: AI-driven analysis of agreements within air traffic control systems, improving management and operational decision-making.  Space Exploration 
      Mars2020 Rover (Perseverance): AI systems embedded within the Perseverance Rover to support its mission to explore Mars.  SPOC (Soil Property and Object Classification): AI-based classification system used to analyze soil and environmental features, particularly for Mars exploration.  Ethical AI: NASA’s Responsible Approach 
      NASA ensures that all AI applications adhere to Responsible AI (RAI) principles outlined by the White House in its Executive Order 13960. This includes ensuring AI systems are transparent, accountable, and ethical. The agency integrates these principles into every phase of development and deployment, ensuring AI technologies used in space exploration are both safe and effective. 
      Looking Forward: AI’s Expanding Role 
      As AI technologies evolve, NASA’s portfolio of AI use cases will continue to grow. With cutting-edge tools currently in development, the agency is poised to further integrate AI into more aspects of space exploration, from deep space missions to sustainable solutions for planetary exploration. 
      By maintaining a strong commitment to both technological innovation and ethical responsibility, NASA is not only advancing space exploration but also setting an industry standard for the responsible use of artificial intelligence in scientific and space-related endeavors. 
      View the AI Inventory View the full article
  • Check out these Videos

×
×
  • Create New...