Jump to content

NASA Anticipates Lunar Findings From Next-Generation Retroreflector


Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

nglr-payload-edit.png?w=1628
Next Generation Lunar Retroreflector, or NGLR-1, is one of 10 payloads set to fly aboard the next delivery for NASA’s CLPS (Commercial Lunar Payload Services) initiative in 2025. NGLR-1, outfitted with a retroreflector, will be delivered to the lunar surface to reflect very short laser pulses from Earth-based lunar laser ranging observatories.
Photo courtesy Firefly Aerospace

Apollo astronauts set up mirror arrays, or “retroreflectors,” on the Moon to accurately reflect laser light beamed at them from Earth with minimal scattering or diffusion. Retroreflectors are mirrors that reflect the incoming light back in the same incoming direction. Calculating the time required for the beams to bounce back allowed scientists to precisely measure the Moon’s shape and distance from Earth, both of which are directly affected by Earth’s gravitational pull. More than 50 years later, on the cusp of NASA’s crewed Artemis missions to the Moon, lunar research still leverages data from those Apollo-era retroreflectors.

As NASA prepares for the science and discoveries of the agency’s Artemis campaign, state-of-the-art retroreflector technology is expected to significantly expand our knowledge about Earth’s sole natural satellite, its geological processes, the properties of the lunar crust and the structure of lunar interior, and how the Earth-Moon system is changing over time. This technology will also allow high-precision tests of Einstein’s theory of gravity, or general relativity.

That’s the anticipated objective of an innovative science instrument called NGLR (Next Generation Lunar Retroreflector), one of 10 NASA payloads set to fly aboard the next lunar delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative. NGLR-1 will be carried to the surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.

Developed by researchers at the University of Maryland in College Park, NGLR-1 will be delivered to the lunar surface, located on the Blue Ghost lander, to reflect very short laser pulses from Earth-based lunar laser ranging observatories, which could greatly improve on Apollo-era results with sub-millimeter-precision range measurements. If successful, its findings will expand humanity’s understanding of the Moon’s inner structure and support new investigations of astrophysics, cosmology, and lunar physics – including shifts in the Moon’s liquid core as it orbits Earth, which may cause seismic activity on the lunar surface.

“NASA has more than half a century of experience with retroreflectors, but NGLR-1 promises to deliver findings an order of magnitude more accurate than Apollo-era reflectors,” said Dennis Harris, who manages the NGLR payload for the CLPS initiative at NASA’s Marshall Space Flight Center in Huntsville, Alabama.

Deployment of the NGLR payload is just the first step, Harris noted. A second NGLR retroreflector, called the Artemis Lunar Laser Retroreflector (ALLR), is currently a candidate payload for flight on NASA’s Artemis III mission to the Moon and could be set up near the lunar south pole. A third is expected to be manifested on a future CLPS delivery to a non-polar location.

“Once all three retroreflectors are operating, they are expected to deliver unprecedented opportunities to learn more about the Moon and its relationship with Earth,” Harris said.

Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.

Learn more about. CLPS and Artemis at:

https://www.nasa.gov/clps

Alise Fisher
Headquarters, Washington
202-358-2546
Alise.m.fisher@nasa.gov

Headquarters, Washington

202-358-2546

Alise.m.fisher@nasa.gov

Corinne Beckinger 
Marshall Space Flight Center, Huntsville, Ala. 
256-544-0034  
corinne.m.beckinger@nasa.gov 

Share

Details

Last Updated
Jan 02, 2025
Editor
Beth Ridgeway
Contact
Corinne M. Beckinger

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Official portrait of Adam Schlesinger.NASA/Bill Stafford NASA has selected Adam Schlesinger as manager for CLPS (Commercial Lunar Payload Services). Schlesinger previously served as the Gateway Program habitation and logistics outpost project lead engineer at Johnson Space Center.

      “I am honored and tremendously excited to take on this new role as NASA continues to enable a growing lunar economy while leveraging the entrepreneurial innovation of the commercial space industry,” Schlesinger said.

      Schlesinger brings more than 20 years’ experience to NASA human space flight programs. Prior to supporting Gateway, Mr. Schlesinger managed the Advanced Exploration Systems Avionics and Software Project, leading a multi-center team to develop and advance several innovative technologies that were targeted for future NASA exploration missions. Mr. Schlesinger also established and led a variety of key public/private partnerships with commercial providers as part of the Next Space Technologies for Exploration Partnerships-2 activities.

      Mr. Schlesinger began his NASA career as a co-op in the Avionic Systems Division and has served in multiple positions within the Engineering and Exploration Architecture, Integration, and Science Directorates, each with increasing technical leadership responsibilities. Mr. Schlesinger earned his bachelor’s degree in electrical engineering from the University of Michigan and a master’s degree in electrical and computer engineering from the Georgia Institute of Technology.

      “Adam is an outstanding leader and engineer, and I am extremely pleased to announce his selection for this position,” said Vanessa Wyche, director of NASA’s Johnson Space Center. “His wealth of experience in human spaceflight, commercial partnerships, and the development and operations of deep-space spacecraft will be a huge asset to CLPS.”

      Throughout his career, Schlesinger has been recognized for outstanding technical achievements and leadership, including multiple NASA Exceptional Achievement Medals, Rotary National Award for Space Achievement Early Career Stellar Award and Middle Career Stellar Award nominee, JSC Director’s Commendation Award, Advanced Exploration Systems Innovation Award, and NASA Early Career Achievement Medal.
      View the full article
    • By NASA
      5 min read
      NASA’s LEXI Will Provide X-Ray Vision of Earth’s Magnetosphere
      A NASA X-ray imager is heading to the Moon as part of NASA’s Artemis campaign, where it will capture the first global images of the magnetic field that shields Earth from solar radiation.
      The Lunar Environment Heliospheric X-ray Imager, or LEXI, instrument is one of 10 payloads aboard the next lunar delivery through NASA’s CLPS (Commercial Lunar Payload Services) initiative, set to launch from the agency’s Kennedy Space Center in Florida no earlier than mid-January, with Firefly Aerospace’s Blue Ghost Lander. The instrument will support NASA’s goal to understand how our home planet responds to space weather, the conditions in space driven by the Sun.
      NASA’s next mission to the Moon will carry an instrument called LEXI (the Lunar Environment Heliospheric X-ray Imager), which will provide the first-ever global view of the magnetic environment that shields Earth from solar radiation. This video can be freely shared and downloaded at https://svs.gsfc.nasa.gov/14739.
      Credits: NASA’s Goddard Space Flight Center Once the dust clears from its lunar landing, LEXI will power on, warm up, and direct its focus back toward Earth. For six days, it will collect images of the X-rays emanating from the edges of our planet’s vast magnetosphere. This comprehensive view could illustrate how this protective boundary responds to space weather and other cosmic forces, as well as how it can open to allow streams of charged solar particles in, creating aurora and potentially damaging infrastructure. 
      “We’re trying to get this big picture of Earth’s space environment,” said Brian Walsh, a space physicist at Boston University and LEXI’s principal investigator. “A lot of physics can be esoteric or difficult to follow without years of specific training, but this will be science that you can see.”
      What LEXI will see is the low-energy X-rays that form when a stream of particles from the Sun, called the solar wind, slams into Earth’s magnetic field. This happens at the edge of the magnetosphere, called the magnetopause. Researchers have recently been able to detect these X-rays in a patchwork of observations from other satellites and instruments. From the vantage point of the Moon, however, the whole magnetopause will be in LEXI’s field of view.
      In this visualization, the LEXI instrument is shown onboard Firefly Aerospace’s Blue Ghost Mission 1, which will deliver 10 Commercial Lunar Payload Services (CLPS) payloads to the Moon. Firefly Aerospace The team back on Earth will be working around the clock to track how the magnetosphere expands, contracts, and changes shape in response to the strength of the solar wind.
      “We expect to see the magnetosphere breathing out and breathing in, for the first time,” said Hyunju Connor, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the NASA lead for LEXI. “When the solar wind is very strong, the magnetosphere will shrink and push backward toward Earth, and then expand when the solar wind weakens.”
      The LEXI instrument will also be poised to capture magnetic reconnection, which is when the magnetosphere’s field lines merge with those in the solar wind and release energetic particles that rain down on Earth’s poles. This could help researchers answer lingering questions about these events, including whether they happen at multiple sites simultaneously, whether they occur steadily or in bursts, and more.
      These solar particles streaming into Earth’s atmosphere can cause brilliant auroras, but they can also damage satellites orbiting the planet or interfere with power grids on the ground.
      “We want to understand how nature behaves,” Connor said, “and by understanding this we can help protect our infrastructure in space.”
      The LEXI team packs the instrument at Boston University. Michael Spencer/Boston University The CLPS delivery won’t be LEXI’s first trip to space. A team at Goddard, including Walsh, built the instrument (then called STORM) to test technology to detect low-energy X-rays over a wide field of view. In 2012, STORM launched into space on a sounding rocket, collected X-ray images, and then fell back to Earth.
      It ended up in a display case at Goddard, where it sat for a decade. When NASA put out a call for CLPS projects that could be done quickly and with a limited budget, Walsh thought of the instrument and the potential for what it could see from the lunar surface.
      “We’d break the glass — not literally — but remove it, restore it, and refurbish it, and that would allow us to look back and get this global picture that we’ve never had before,” he said. Some old optics and other components were replaced, but the instrument was overall in good shape and is now ready to fly again. “There’s a lot of really rich science we can get from this.”
      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA Goddard is a lead science collaborator on LEXI. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander, including LEXI.
      Learn more about CLPS and Artemis at:
      https://www.nasa.gov/clps
      By Kate Ramsayer
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Jan 03, 2025 Editor Abbey Interrante Related Terms
      Artemis Commercial Lunar Payload Services (CLPS) Earth’s Magnetic Field Earth’s Moon Goddard Space Flight Center Heliophysics Heliophysics Division Magnetosphere Science & Research The Sun Explore More
      2 min read NASA Workshops Culturally Inclusive Planetary Engagement with Educators


      Article


      20 hours ago
      3 min read Astronomy Activation Ambassadors: A New Era


      Article


      3 days ago
      5 min read NASA’s Parker Solar Probe Makes History With Closest Pass to Sun


      Article


      7 days ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Learn Home Science Activation NASA Workshops Culturally… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   2 min read
      NASA Workshops Culturally Inclusive Planetary Engagement with Educators
      From November 6-8, 2024, the NASA Science Activation Program’s Planetary Resources and Content Heroes (ReaCH) project held a Culturally Inclusive Planetary Engagement workshop at the Bradley Observatory at Agnes Scott College in Atlanta, Georgia for the space sciences community, including planetary science, astrobiology, astronomy, and heliophysics professionals, as well as invited education specialists. To practice the skills learned in the workshop, participants facilitated a variety of space-themed, culturally-inclusive, hands-on activities for 79 students, family, and staff at the Center for a New Generation at the Tuskegee Airmen Global Academy Boys and Girls Club.
      Workshop participants provided anonymous feedback as a part of their workshop evaluations:
      “[This experience] helped me learn a lot about how to make different cultures and ethnicities feel involved and included and also engage with them to inspire in them a love for science”
      “. . .I feel like the discussions were so important to me, considering we all come from so many different backgrounds, and our exposure has been different, so we all have a different point of view to bring to the discussion that others, that I, might not think of right away. So I think it was really nice to hear so many different perspectives in all of these discussions.”
      “[The facilitator] connected cultural diversity to an activity. That is not easy to do. I loved it and it is what I expected coming into this workshop.”
      This workshop was conducted in partnership with Agnes Scott College, Georgia Tech, the Boys & Girls Clubs of Metro Atlanta, and members of the Center for Lunar Environment and Volatile Exploration Research (CLEVER) NASA Solar System Exploration Research Institute (SSERVI) Center. ReaCH workshops are designed to enhance the ability of scientists to engage their local communities in science. The Planetary ReaCH project is building a replicable model that will be used to support similar workshops for other science fields. NASA-funded researchers, including early-career scientists, are invited to apply for the 2025 workshops!
      The Planetary ReaCH project is supported by NASA under cooperative agreement award number 80NSSC21M0003 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      The workshop was attended by researchers including early career scientists, planetary scientists, astrobiologists, astronomers, heliophysicists, and education specialists. Share








      Details
      Last Updated Jan 02, 2025 Editor NASA Science Editorial Team Related Terms
      Grades 5 – 8 for Educators Grades 9-12 for Educators Grades K – 4 for Educators Opportunities For Educators to Get Involved Planetary Science Science Activation Explore More
      3 min read Astronomy Activation Ambassadors: A New Era


      Article


      2 days ago
      5 min read NASA Study Shows Ferns Facilitate Recovery from Environmental Disaster 
      NASA-supported scientists have shown how ferns might help ecosystems recover from disasters.


      Article


      2 weeks ago
      5 min read NASA DAVINCI Mission’s Many ‘Firsts’ to Unlock Venus’ Hidden Secrets
      NASA’s DAVINCI probe will be first in the 21st century to brave Venus’ atmosphere as…


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      Humans are returning to the Moon—this time, to stay. Because our presence will be more permanent, NASA has selected a location that maximizes line-of-sight communication with Earth, solar visibility, and access to water ice: the Lunar South Pole (LSP). While the Sun is in the lunar sky more consistently at the poles, it never rises more than a few degrees above the horizon; in the target landing regions, the highest possible elevation is 7°. This presents a harsh lighting environment never experienced during the Apollo missions, or in fact, in any human spaceflight experience. The ambient lighting will severely affect the crews’ ability to see hazards and to perform simple work. This is because the human vision system, which despite having a high-dynamic range, cannot see well into bright light and cannot adapt quickly from bright to dark or vice versa. Functional vision is required to perform a variety of tasks, from simple tasks (e.g., walking, operating simple tools) through managing complex machines (e.g., lander elevator, rovers). Thus, the environment presents an engineering challenge to the Agency: one that must be widely understood before it can be effectively addressed.

       In past NASA missions and programs, design of lighting and functional vision support systems for extravehicular activity (EVA) or rover operations have been managed at the lowest program level. This worked well for Apollo and low Earth orbit because the Sun angle was managed by mission planning and astronaut self-positioning; helmet design alone addressed all vision challenges. The Artemis campaign presents new challenges to functional vision, because astronauts will be unable to avoid having the sun in their eyes much of the time they are on the lunar surface. This, combined with the need for artificial lighting in the extensive shadowing at the LSP, means that new functional vision support systems must be developed across projects and programs. The design of helmets, windows, and lighting systems must work in a complementary fashion, within and across programs, to achieve a system of lighting and vision support that enables crews to see into darkness while their eyes are light-adapted, in bright light while still dark-adapted, and protects their eyes from injury.
      Many of the findings of the assessment were focused on the lack of specific requirements to prevent functional vision impairment by the Sun’s brilliance (which is different from preventing eye injury), while enabling astronauts to see well enough to perform specific tasks. Specifically, tasks expected of astronauts at the LSP were not incorporated into system design requirements to enable system development that ensures functional vision in the expected lighting environment. Consequently, the spacesuit, for example, has flexibility requirements for allowing the astronauts to walk but not for ensuring they can see well enough to walk from brilliant Sun into a dark shadow and back without the risk of tripping or falling. Importantly, gaps were identified in allocation of requirements across programs to ensure that the role of the various programs is for each to understand functional vision. NESC recommendations were offered that made enabling functional vision in the harsh lighting environment a specific and new requirement for the system designers. The recommendations also included that lighting, window, and visor designs be integrated.
      The assessment team recommended that a wide variety of simulation techniques, physical and virtual, need to be developed, each with different and well-stated capabilities with respect to functional vision. Some would address the blinding effects of sunlight at the LSP (not easily achieved through virtual approaches) to evaluate performance of helmet shields and artificial lighting in the context of the environment and adaptation times. Other simulations would add terrain features to identify the threats in simple (e.g., walking, collection of samples) and complex (e.g., maintenance and operation of equipment) tasks. Since different facilities have different strengths, they also have different weaknesses. These strengths and limitations must be characterized to enable verification of technical solutions and crew training.
      NESC TB 2024- discipline-focus-hfView the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Regolith Adherence Characterization, or RAC, is one of 10 science and technology instruments flying on NASA’s next Commercial Lunar Payload Services (CLPS) flight as part of the Blue Ghost Misison-1. Developed by Aegis Aerospace of Webster, Texas, RAC is designed to study how lunar dust reacts to more than a dozen different types of material samples, located on the payload’s wheels. Photo courtesy Firefly Aerospace The Moon may look like barren rock, but it’s actually covered in a layer of gravel, pebbles, and dust collectively known as “lunar regolith.” During the Apollo Moon missions, astronauts learned firsthand that the fine, powdery dust – electromagnetically charged due to constant bombardment by solar and cosmic particles – is extremely abrasive and clings to everything: gloves, boots, vehicles, and mechanical equipment. What challenges does that dust pose to future Artemis-era missions to establish long-term outposts on the lunar surface?
      That’s the task of an innovative science instrument called RAC-1 (Regolith Adherence Characterization), one of 10 NASA payloads flying aboard the next delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative and set to be carried to the surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
      Developed by Aegis Aerospace of Webster, Texas, RAC will expose 15 sample materials – fabrics, paint coatings, optical systems, sensors, solar cells, and more – to the lunar environment to determine how tenaciously the lunar dust sticks to each one. The instrument will measure accumulation rates during landing and subsequent routine lander operations, aiding identification of those materials which best repel or shed dust. The data will help NASA and its industry partners more effectively test, upgrade, and protect spacecraft, spacesuits, habitats, and equipment in preparation for continued exploration of the Moon under the Artemis campaign.
      “Lunar regolith is a sticky challenge for long-duration expeditions to the surface,” said Dennis Harris, who manages the RAC payload for NASA’s CLPS initiative at the agency’s Marshall Space Flight Center in Huntsville, Alabama. “Dust gets into gears, sticks to spacesuits, and can block optical properties. RAC will help determine the best materials and fabrics with which to build, delivering more robust, durable hardware, products, and equipment.”
      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
      Learn more about. CLPS and Artemis at:
      https://www.nasa.gov/clps
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Dec 20, 2024 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
      3 min read NASA Payload Aims to Probe Moon’s Depths to Study Heat Flow
      Article 2 days ago 4 min read NASA Technology Helps Guard Against Lunar Dust
      Article 8 months ago 4 min read NASA Collects First Surface Science in Decades via Commercial Moon Mission
      Article 10 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...