Members Can Post Anonymously On This Site
S4S establishes strategic vision after first year of successes
-
Similar Topics
-
By NASA
The first shuttle mission of 1995, STS-63 included several historic firsts. As part of Phase 1 of the International Space Station program, space shuttle Discovery’s 20th flight conducted the first shuttle rendezvous with the Mir space station, in preparation for future dockings. The six-person crew included Commander James Wetherbee, Pilot Eileen Collins – the first woman to pilot a space shuttle mission – Payload Commander Bernard Harris, and Mission Specialists Michael Foale, Janice Voss, and Vladimir Titov. The spacewalk conducted during the mission included the first African American and the first British born astronauts to walk in space. The crew conducted 20 science and technology experiments aboard the third flight of the Spacehab module. The astronauts deployed and retrieved the SPARTAN-204 satellite that during its two-day free flight carried out observations of galactic objects using an ultraviolet instrument.
The STS-63 crew patch. The STS-63 crew of Janice Voss, front row left, Eileen Collins, James Wetherbee, and Vladimir Titov; Bernard Harris, back row left, and Michael Foale. The Shuttle-Mir program patch. NASA announced the six-person STS-63 crew in September 1993 for a mission then expected to fly in May 1994. Wetherbee, selected by NASA in 1984, had already flown twice in space, as pilot on STS-32 and commander of STS-52. For Collins, selected in the class of 1990 as the first woman shuttle pilot, STS-63 marked her first spaceflight. Also selected in 1990, Harris had flown previously on STS-55 and Voss on STS-57. Foale, selected as an astronaut in 1987, had flown previously on STS-45 and STS-56. Titov, selected as a cosmonaut in 1976, had flown two previous spaceflights – a two-day aborted docking mission to Salyut-7 and the first year-long mission to Mir – and survived a launch pad abort. He served as backup to Sergei Krikalev on STS-60, who now served as Titov’s backup.
Space shuttle Discovery rolls out to Launch Pad 39B. The STS-63 crew during the Terminal Countdown Demonstration Test in the White Room of Launch Pad 39B. The STS-63 astronauts walk out of crew quarters for the van ride out to the launch pad. Space shuttle Discovery arrived back at NASA’s Kennedy Space Center in Florida on Sept. 27, 1994, after a ferry flight from California following its previous mission, STS-64. Workers towed it to the Orbiter Processing Facility the next day. Following installation of the Spacehab, SPARTAN, and other payloads, on Jan. 5, 1995, workers rolled Discovery from the processing facility to the Vehicle Assembly Building for mating with an external tank and twin solid rocket boosters. Rollout to Launch Pad 39B took place on Jan. 10. On Jan. 17-18, teams conducted the Terminal Countdown Demonstration Test, a dress rehearsal for the countdown to launch planned for Feb. 2, with the astronaut crew participating in the final few hours as they would on launch day. They returned to Kennedy on Jan. 29 for final pre-launch preparations. On Feb. 2, launch teams called a 24-hour scrub to allow time to replace a failed inertial measurement unit aboard Discovery.
Launch of space shuttle Discovery on mission STS-63. STS-63 Commander James Wetherbee on Discovery’s flight deck. STS-63 Pilot Eileen Collins on Discovery’s flight deck. On Feb. 3, Discovery and its six-person crew lifted off from Launch Pad 39B at 12:22 a.m. EST, the time dictated by orbital mechanics – Discovery had to launch into the plane of Mir’s orbit. Within 8.5 minutes, Discovery had reached orbit, for the first time in shuttle history at an inclination of 51.6 degrees, again to match Mir’s trajectory. Early in the mission, one of Discovery’s 44 attitude control thrusters failed and two others developed minor but persistent leaks, threatening the Mir rendezvous.
View of the Spacehab module in Discovery’s payload bay. The SPARTAN-204 satellite attached to the remote manipulator system or robotic arm during the flight day two operations. On the mission’s first day in space, Harris and Titov activated the Spacehab module and several of its experiments. Wetherbee and Collins performed the first of five maneuvers to bring Discovery within 46 miles of Mir for the final rendezvous on flight day four. Teams on the ground worked with the astronauts to resolve the troublesome thruster problems to ensure a safe approach to the planned 33 feet. On flight day 2, as those activities continued, Titov grappled the SPARTAN satellite with the shuttle’s robotic arm and lifted it out of the payload bay. Scientists used the ultraviolet instrument aboard SPARTAN to investigate the ultraviolet glow around the orbiter and the aftereffects of thruster firings. The tests complete, Titov placed SPARTAN back in the payload bay.
The Mir space station as seen from Discovery during the rendezvous. Space shuttle Discovery as seen from Mir during the rendezvous. Mir during Discovery’s flyaround. On flight day three, the astronauts continued working on science experiments while Wetherbee and Collins completed several more burns for the rendezvous on flight day four, the thruster issues resolved to allow the close approach to 33 feet. Flying Discovery manually from the aft flight deck, and assisted by his crew mates, Wetherbee slowly brought the shuttle to within 33 feet of the Kristall module of the space station. The STS-63 crew communicated with the Mir-17 crew of Aleksandr Viktorenko, Elena Kondakova, and Valeri Polyakov via VHF radio, and the crews could see each other through their respective spacecraft windows. After station-keeping for about 10 minutes, Wetherbee slowly backed Discovery away from Mir to a distance of 450 feet. He flew a complete circle around Mir before conducting a final separation maneuver.
The SPARTAN-204 satellite as it begins its free flight on flight day five. STS-63 crew member Vladimir Titov works on an experiment in the Spacehab module. On the mission’s fifth day, Titov once again grappled SPARTAN with the robotic arm, but this time after raising it above the payload bay, he released the satellite to begin its two-day free flight. Wetherbee steered Discovery away from the departing satellite. During its free flight, the far ultraviolet imaging spectrograph aboard SPARTAN recorded about 40 hours of observations of galactic dust clouds. During this time, the astronauts aboard the shuttle continued work on the 20 experiments in Spacehab and prepared for the upcoming spacewalk.
STS-63 crew member Janice Voss operates the remote manipulator system during the retrieval of the SPARTAN-204 satellite. STS-63 astronauts Bernard Harris, left, and Michael Foale at the start of their spacewalk. Wetherbee and the crew flew the second rendezvous of the mission on flight day seven to retrieve SPARTAN. Voss operated the robotic arm to capture and stow the satellite in the payload bay following its 43-hour free flight. Meanwhile, Foale and Harris suited up in the shuttle’s airlock and spent four hours breathing pure oxygen to rid their bodies of nitrogen to prevent decompression sickness, also known as the bends, when they reduced their spacesuit pressures for the spacewalk.
Astronauts Bernard Harris, left, and Michael Foale during the spacesuit thermal testing part of their spacewalk. Foale, left, and Harris during the mass handling part of their spacewalk. Foale and Harris exited the airlock minutes after Voss safely stowed SPARTAN. With Titov operating the robotic arm, Harris and Foale climbed aboard its foot restraint to begin the first phase of the spacewalk, testing modifications to the spacesuits for their thermal characteristics. Titov lifted them well above the payload bay and the two spacewalkers stopped moving for about 15 minutes, until their hands and feet got cold. The spacewalk then continued into its second portion, the mass handling activity. Titov steered Foale above the SPARTAN where he lifted the satellite up and handed it off to Harris anchored in the payload bay. Harris then moved it around in different directions to characterize handling of the 2,600-pound satellite. Foale and Harris returned to the airlock after a spacewalk lasting 4 hours 39 minutes.
The STS-63 astronauts pose for their inflight crew photo. Discovery makes a successful landing at NASA’s Kennedy Space Center in Florida. The day following the spacewalk, the STS-63 crew finished the science experiments, closed down the Spacehab module, and held a news conference with reporters on the ground. Wetherbee and Collins tested Discovery’s thrusters and aerodynamic surfaces in preparation for the following day’s reentry and landing. The next day, on Feb. 11, they closed Discovery’s payload bay doors and put on their launch and entry suits. Wetherbee guided Discovery to a smooth landing on Kennedy’s Shuttle Landing Facility, ending the historic mission after eight days, six hours, and 28 minutes. They orbited the Earth 129 times. The mission paved the way for nine shuttle dockings with Mir beginning with STS-71, and 37 with the International Space Station. Workers at Kennedy towed Discovery to the processing facility to prepare it for its next mission, STS-70 in July 1995.
Over the next three years, Wetherbee, Collins, Foale, and Titov all returned to Mir during visiting shuttle flights, with Foale staying aboard as the NASA-5 long-duration crew member. Between 2001 and 2005, Wetherbee, Collins, and Foale also visited the International Space Station. Wetherbee commanded two assembly flights, Collins commanded the return to flight mission after the Columbia accident, and Foale commanded Expedition 8.
Enjoy the crew narrate a video about their STS-63 mission.
Explore More
9 min read 30 Years Ago: STS-60, the First Shuttle-Mir Mission
Article 1 year ago 7 min read Space Station 20th: STS-71, First Shuttle-Mir Docking
Article 5 years ago 11 min read Space Station 20th: Launch of Mir 18 Crew
Article 5 years ago View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
Sols 4439-4440: A Lunar New Year on Mars
NASA’s Mars rover Curiosity captured this image, which includes the prominent wedge-shaped block in the foreground, the imaging target dubbed “Vasquez Rocks” — named after a site in Southern California that’s been a popular filming location for movies and television, including several episodes of “Star Trek.” Curiosity acquired this image using its Left Navigation Camera on sol 4437 — Martian day 4,437 of the Mars Science Laboratory mission — on Jan. 29, 2025, at 04:25:25 UTC. NASA/JPL-Caltech Earth planning date: Wednesday, Jan. 29, 2025
We’re planning sols 4439 and 4440 on the first day of the Lunar New Year here on Earth, and I’m the Geology/Mineralogy Science Theme Lead for today. The new year is a time for all kinds of abundance and good luck, and we are certainly lucky to be celebrating another new year on Mars with the Curiosity rover!
The rover’s current position is on the north side of the “Texoli” butte west of the “Rustic Canyon” crater, and we are on our way southwest through the layered sulfate unit toward a possible boxwork structure that we hope to study later this year. Today’s workspace included a couple of representative bedrock blocks with contrasting textures, so we planned an APXS elemental chemistry measurement on one (“Deer Springs”) and a LIBS elemental measurement on another (“Taco Peak”).
For imaging, there were quite a few targets in view making it possible to advance a variety of science goals. The ChemCam remote imager was used for a mosaic on “Wilkerson Butte” to observe the pattern of resistant and recessive layering. Mastcam mosaics explored some distant landforms (“Sandstone Peak,” “Wella’s Peak”) as well as fractures, block shapes and textures, and aeolian ripples closer to the rover (“Tahquitz Peak,” “Mount Islip,” “Vasquez Rocks,” “Dawson Saddle”). Our regular environmental science measurements were made as well, to track atmospheric opacity and dust activity. So our planning sols include an abundance of targets indeed.
Fun fact: Today’s name “Vasquez Rocks” comes from a site on Earth in Southern California that has been a popular spot for science fiction filming, appearing in several episodes of “Star Trek” going back to the original series!
Written by Lucy Lim, Participating Scientist at Goddard Space Flight Center
Share
Details
Last Updated Jan 31, 2025 Related Terms
Blogs Explore More
4 min read Sols 4437-4438: Coordinating our Dance Moves
Article
2 days ago
2 min read Sols 4434-4436: Last Call for Clouds
Article
3 days ago
3 min read What ‘Perseverance’ Means on Mars and for Our NASA Family
Article
7 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By European Space Agency
The European Space Agency (ESA) has signed a contract with Thales Alenia Space in Italy to lead European aerospace companies in building the Argonaut Lunar Descent Element, ESA’s first lunar lander.
View the full article
-
By NASA
On Jan. 24, 1985, space shuttle Discovery took off from NASA’s Kennedy Space Center (KSC) in Florida on STS-51C, the first space shuttle mission entirely dedicated to the Department of Defense (DOD). As such, many of the details of the flight remain classified. Discovery’s crew of Commander Thomas “T.K.” Mattingly, Pilot Loren Shriver, Mission Specialists Ellison Onizuka and James Buchli, and Payload Specialist Gary Payton deployed a classified satellite that used an Inertial Upper Stage (IUS) to reach its final geostationary orbit. The three-day mission ended with a landing at KSC. Postflight inspection of the Solid Rocket Boosters (SRBs) revealed the most significant erosion of O-ring seals seen in the shuttle program up to that time, attributed to unusually cold weather before and during launch.
The STS-51C crew of Pilot Loren Shriver, seated left, and Commander Thomas “T.K.” Mattingly; Payload Specialist Gary Payton, standing left, and Mission Specialists James Buchli and Ellison Onizuka. The STS-51C crew patch. In October 1982, NASA assigned astronauts Mattingly, Shriver, Onizuka, and Buchli as the STS-10 crew for a dedicated DOD flight aboard Challenger then scheduled for September 1983. Payton joined the crew as a payload specialist in the summer of 1983 with Keith Wright assigned as his backup. The failure of the IUS on STS-6 in April 1983 delayed the STS-10 mission, that also used the IUS, until engineers could identify and fix the cause of the problem. By September 1983, NASA had remanifested the crew and the payload on STS-41F with a July 1984 launch, that changed to STS-41E by November 1983. Additional delays in fixing the IUS delayed the mission yet again, by June 1984 redesignated as STS-51C and slated for December 1984 aboard Challenger.
STS-51C marked the third spaceflight for Mattingly, selected in 1966 as part of NASA’s fifth group of astronauts. He served on the prime crew for Apollo 13 until exposure to German measles forced his last-minute replacement by his backup. He then flew on Apollo 16 and STS-4. For Shriver, Onizuka, and Buchli, all three selected as astronauts in the class of 1978, STS-51C marked their first trip into space. The U.S. Air Force selected Payton and Wright in August 1979 in its first class of Manned Spaceflight Engineers, and STS-51C marked Payton’s first and only space mission.
In November 1984, NASA decided to delay STS-51C from December 1984 to January 1985 and swap orbiters from Challenger to Discovery. Postflight inspections following Challenger’s STS-41G mission in October 1984 revealed degradation of the bonding materials holding thermal protection system tiles onto the orbiter, requiring the replacement of 4,000 tiles. The time required to complete the work precluded a December launch. Tests conducted on Discovery prior to its November STS-51A mission revealed the bonding material to be sound.
Space shuttle Discovery rolls out to Launch Pad 39A. The STS-51C crew poses during launch pad evacuation drills associated with the Terminal Countdown Demonstration Test. The STS-51C crew exits crew quarters for the ride to Launch Pad 39A. On Jan. 5, 1985, Discovery rolled out from KSC’s Vehicle Assembly Building, where workers mated it with its External Tank (ET) and SRBs, to Launch Pad 39A. There, engineers conducted the Terminal Countdown Demonstration Test, essentially a dress rehearsal for the actual countdown, on Jan. 6-7, with the crew participating in the final few hours much as they would on launch day. The astronauts returned to KSC on Jan. 20 to prepare for the planned launch on Jan. 23. The day before, NASA managers decided to delay the launch by one day due to unseasonably cold weather, with concern about sub-freezing temperatures causing ice to form on the ET and possibly coming loose during ascent and damaging the vehicle. The DOD had requested that NASA keep the actual launch time secret until T minus nine minutes, with most of the countdown taking place hidden from public view.
Liftoff of space shuttle Discovery on STS-51C. Liftoff of Discovery on its third mission, STS-51C, came at 2:50 p.m. EST on Jan. 24, beginning the 15th space shuttle flight. Eight and a half minutes later, Discovery and its five-man crew had reached orbit. And, at the DOD customer’s request, all public coverage of the mission ended. Although NASA could not reveal the spacecraft’s orbital parameters, trade publications calculated that Discovery first entered an elliptical orbit, circularized over the next few revolutions, prior to Onizuka deploying the IUS and payload combination on the seventh orbit. Neither NASA nor the DOD have released any imagery of the deployment or even of the payload bay, with only a limited number of in-cabin and Earth observation photographs made public.
STS-51C Commander Thomas “T.K.” Mattingly films the Earth from Discovery’s overhead flight deck window. STS-51C crew members Loren Shriver, left, Ellison Onizuka, and James Buchli on Discovery’s flight deck. STS-51C Payload Specialist Gary Payton on Discovery’s flight deck. Sunlight streams through Earth’s upper atmosphere, with Discovery’s tail and Orbital Maneuvering Engine pods outlined by sunlight. The Pacific coast of Guatemala and southern Mexico. New Orleans and the Mississippi River delta. Discovery touches down at NASA’s Kennedy Space Center in Florida. The STS-51C astronauts are greeted by NASA officials as they exit Discovery. To maintain the mission’s secrecy, NASA could reveal the touchdown time only 16 hours prior to the event. On Jan. 27, Mattingly and Shriver brought Discovery to a smooth landing at KSC’s Shuttle Landing Facility after a flight of three days one hour 33 minutes, the shortest space shuttle mission except for the first two orbital test flights. The astronauts orbited the Earth 49 times. About an hour after touchdown, the astronaut crew exited Discovery and boarded the Astrovan for the ride back to crew quarters. Neither NASA management nor the astronauts held a post mission press conference. The U.S. Air Force announced only that the “IUS aboard STS-51C was deployed from the shuttle Discovery and successfully met its mission objectives.” Later in the day, ground crews towed Discovery to the Orbiter Processing Facility to begin preparing it for its next planned mission, STS-51D in March.
Postscript
Following the recovery of SRBs after each shuttle mission, engineers conducted detailed inspections before clearing them for reuse. After STS-51C, inspections of the critical O-ring seals that prevented hot gases from escaping from the SRB field joints revealed significant erosion and “blow-by” between the primary and secondary O-rings. Both left and right hand SRBs showed this erosion, the most significant of the program up to that time. Importantly, these O-rings experienced weather colder than any previous shuttle mission, with overnight ambient temperatures in the teens and twenties. Even at launch time, the O-rings had reached only 60 degrees. Engineers believed that these cold temperatures made the O-rings brittle and more susceptible to erosion. One year later, space shuttle Challenger launched after similarly cold overnight temperatures, with O-rings at 57 degrees at launch time. The Rogers Commission report laid the blame of the STS-51L accident on the failure of O-rings that allowed super-hot gases to escape from the SRB and impinge on the hydrogen tank in the ET, resulting in the explosion that destroyed the orbiter and claimed the lives of seven astronauts. The commission also faulted NASA’s safety culture for not adequately addressing the issue of O-ring erosion, a phenomenon first observed on STS-2 and to varying degrees on several subsequent missions.
View the full article
-
By NASA
NASA JPL is readying for, clockwise from lower right, the launches of CADRE (its engineering models are seen here), Lunar Trailblazer, NISAR (seen in an artist’s concept), Sentinel-6B (artist’s concept), and SPHEREx, as well as the Mars gravity assist of Europa Clipper (artist’s concept).NASA/JPL-Caltech/BAE Systems/Lockheed Martin Space Missions will study everything from water on the Moon to the transformation of our universe after the big bang and ongoing changes to Earth’s surface.
With 2024 receding into the distance, NASA’s Jet Propulsion Laboratory is already deep into a busy 2025. Early in the new year, the Eaton Fire came close to JPL, destroying the homes of more than 200 employees, but work has continued apace to maintain mission operations and keep upcoming missions on track.
Several missions managed by NASA JPL are prepping for launch this year. Most have been years in the making and launches are, of course, only part of the bigger picture. Other milestones are also on the docket for the federal laboratory, which Caltech manages for NASA.
Here’s a glimpse of what lies ahead this year.
Mysterious Universe
Shaped like the bell of a trumpet and as big as a subcompact car, NASA’s SPHEREx space observatory is aiming for the stars. Known formally as the Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer, the mission will create four 3D maps of the entire sky in order to improve humanity’s understanding of the universe — how it expanded after the big bang, where ingredients of life can be found in ice grains, and much more. Target launch date: no earlier than Feb. 27 from Vandenberg Space Force Base in California.
The Moon’s Icy Secrets
NASA’s Lunar Trailblazer aims to help resolve an enduring mystery: Where is the Moon’s water? Scientists have seen signs suggesting it exists even where temperatures soar on the lunar surface, and there’s good reason to believe it can be found as surface ice in permanently shadowed craters, places that have not seen direct sunlight for billions of years. Managed by NASA JPL and led by Caltech, the small satellite will help provide answers, mapping the Moon’s surface water in unprecedented detail to determine the water’s abundance, location, form, and how it changes over time. The small satellite will hitch a ride, slated for late February, on the same launch as the Intuitive Machines-2 delivery to the Moon through NASA’s CLPS (Commercial Lunar Payload Services) initiative.
Earth’s Changing Surface
A collaboration between the United States and India, NISAR is a major addition to the fleet of satellites studying our changing planet. Short for NASA-Indian Space Research Organisation Synthetic Aperture Radar, the mission’s name is a nesting doll of acronyms, and the spacecraft is a nesting doll of capabilities: The first spacecraft to carry both L-band and S-band radars, it will see surface changes related to volcanoes, earthquakes, ice sheet motion, deforestation, and more in unprecedented detail after it launches in a few months’ time.
Sea Level
Targeting a November launch, Sentinel-6B will provide global sea surface height measurements — some of the most accurate data of its kind yet — that will improve climate models and hurricane tracking, as well as our understanding of phenomena like El Niño. A collaboration between NASA and ESA (European Space Agency), the spacecraft will take the baton from its twin, Sentinel-6 Michael Freilich, which launched in 2020. Together, the satellites are extending for another 10 years a nearly three-decade record of global sea surface height.
Moon Rover Trio
As a technology demonstration, the CADRE (Cooperative Autonomous Distributed Robotic Exploration) project marks another step NASA is taking toward developing robots that, by operating autonomously, can boost the efficiency of future missions. The project team at JPL will soon be packing up and shipping CADRE’s three suitcase-size rovers to Texas in preparation for their journey to the Moon aboard a commercial lander through one of NASA’s future CLPS deliveries. The rovers are designed to work together as a team without direct input from mission controllers back on Earth. And, by taking simultaneous measurements from multiple locations, they are meant to show how multirobot missions could enable new science and support astronauts.
Quantum Technology
Having arrived at the International Space Station in November, SEAQUE (Space Entanglement and Annealing QUantum Experiment) is testing two technologies that, if successful, could enable communication using entangled photons between two quantum systems. The research from this experiment, which gets underway in 2025, could help develop the building blocks for a future global quantum network that would allow equipment such as quantum computers to transfer data securely across large distances.
Gravity Assist to Reach Jupiter
Launched this past October, Europa Clipper will arrive at Jupiter in 2030 to investigate whether an ocean beneath the ice shell of the gas giant’s moon Europa has conditions suitable for life. The spacecraft will travel 1.8 billion miles (2.9 billion kilometers) to reach its destination. Since there are limitations on how much fuel the spacecraft can carry, mission planners are having Europa Clipper fly by Mars on March 1, using the planet’s gravity as a slingshot to add speed to its journey.
For more about NASA missions JPL supports, go to:
https://www.jpl.nasa.gov/missions/
Meet SPHEREx, NASA’s newest cosmic mapper How NISAR will track Earth’s changing surface CADRE’s mini-rovers will team up to explore the Moon Instruments deployed, Europa Clipper is Mars-bound News Media Contact
Matthew Segal
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-8307
matthew.j.segal@jpl.nasa.gov
2025-008
Share
Details
Last Updated Jan 23, 2025 Related Terms
Jet Propulsion Laboratory Explore More
5 min read Study Finds Earth’s Small Asteroid Visitor Likely Chunk of Moon Rock
Article 1 day ago 5 min read How New NASA, India Earth Satellite NISAR Will See Earth
Article 2 days ago 4 min read NASA Scientists, Engineers Receive Presidential Early Career Awards
Article 6 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.