Members Can Post Anonymously On This Site
NESC Assists in Heatshield Investigation
-
Similar Topics
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Ingenuity Mars Helicopter, right, stands near the apex of a sand ripple in an image taken by Perseverance on Feb. 24, 2024, about five weeks after the rotorcraft’s final flight. Part of one of Ingenuity’s rotor blades lies on the surface about 49 feet (15 meters) west of helicopter (at left in image).NASA/JPL-Caltech/LANL/CNES/CNRS The review takes a close look the final flight of the agency’s Ingenuity Mars Helicopter, which was the first aircraft to fly on another world.
Engineers from NASA’s Jet Propulsion Laboratory in Southern California and AeroVironment are completing a detailed assessment of the Ingenuity Mars Helicopter’s final flight on Jan. 18, 2024, which will be published in the next few weeks as a NASA technical report. Designed as a technology demonstration to perform up to five experimental test flights over 30 days, Ingenuity was the first aircraft on another world. It operated for almost three years, performed 72 flights, and flew more than 30 times farther than planned while accumulating over two hours of flight time.
The investigation concludes that the inability of Ingenuity’s navigation system to provide accurate data during the flight likely caused a chain of events that ended the mission. The report’s findings are expected to benefit future Mars helicopters, as well as other aircraft destined to operate on other worlds.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
NASA’s Ingenuity Mars Helicopter used its black-and-white navigation camera to capture this video on Feb. 11, 2024, showing the shadow of its rotor blades. The imagery confirmed damage had occurred during Flight 72. NASA/JPL-Caltech Final Ascent
Flight 72 was planned as a brief vertical hop to assess Ingenuity’s flight systems and photograph the area. Data from the flight shows Ingenuity climbing to 40 feet (12 meters), hovering, and capturing images. It initiated its descent at 19 seconds, and by 32 seconds the helicopter was back on the surface and had halted communications. The following day, the mission reestablished communications, and images that came down six days after the flight revealed Ingenuity had sustained severe damage to its rotor blades.
What Happened
“When running an accident investigation from 100 million miles away, you don’t have any black boxes or eyewitnesses,” said Ingenuity’s first pilot, Håvard Grip of JPL. “While multiple scenarios are viable with the available data, we have one we believe is most likely: Lack of surface texture gave the navigation system too little information to work with.”
The helicopter’s vision navigation system was designed to track visual features on the surface using a downward-looking camera over well-textured (pebbly) but flat terrain. This limited tracking capability was more than sufficient for carrying out Ingenuity’s first five flights, but by Flight 72 the helicopter was in a region of Jezero Crater filled with steep, relatively featureless sand ripples.
This short animation depicts a NASA concept for a proposed follow-on to the agency’s Ingenuity Mars Helicopter called Mars Chopper, which remains in early conceptual and design stages. In addition to scouting, such a helicopter could carry science instruments to study terrain rovers can’t reach. One of the navigation system’s main requirements was to provide velocity estimates that would enable the helicopter to land within a small envelope of vertical and horizontal velocities. Data sent down during Flight 72 shows that, around 20 seconds after takeoff, the navigation system couldn’t find enough surface features to track.
Photographs taken after the flight indicate the navigation errors created high horizontal velocities at touchdown. In the most likely scenario, the hard impact on the sand ripple’s slope caused Ingenuity to pitch and roll. The rapid attitude change resulted in loads on the fast-rotating rotor blades beyond their design limits, snapping all four of them off at their weakest point — about a third of the way from the tip. The damaged blades caused excessive vibration in the rotor system, ripping the remainder of one blade from its root and generating an excessive power demand that resulted in loss of communications.
This graphic depicts the most likely scenario for the hard landing of NASA’s Ingenuity Mars Helicopter during its 72nd and final flight on Jan. 18, 2024. High horizontal velocities at touchdown resulted in a hard impact on a sand ripple, which caused Ingenuity to pitch and roll, damaging its rotor blades. NASA/JPL-Caltech Down but Not Out
Although Flight 72 permanently grounded Ingenuity, the helicopter still beams weather and avionics test data to the Perseverance rover about once a week. The weather information could benefit future explorers of the Red Planet. The avionics data is already proving useful to engineers working on future designs of aircraft and other vehicles for the Red Planet.
“Because Ingenuity was designed to be affordable while demanding huge amounts of computer power, we became the first mission to fly commercial off-the-shelf cellphone processors in deep space,” said Teddy Tzanetos, Ingenuity’s project manager. “We’re now approaching four years of continuous operations, suggesting that not everything needs to be bigger, heavier, and radiation-hardened to work in the harsh Martian environment.”
Inspired by Ingenuity’s longevity, NASA engineers have been testing smaller, lighter avionics that could be used in vehicle designs for the Mars Sample Return campaign. The data is also helping engineers as they research what a future Mars helicopter could look like — and do.
During a Wednesday, Dec. 11, briefing at the American Geophysical Union’s annual meeting in Washington, Tzanetos shared details on the Mars Chopper rotorcraft, a concept that he and other Ingenuity alumni are researching. As designed, Chopper is approximately 20 times heavier than Ingenuity, could fly several pounds of science equipment, and autonomously explore remote Martian locations while traveling up to 2 miles (3 kilometers) in a day. (Ingenuity’s longest flight was 2,310 feet, or 704 meters.)
“Ingenuity has given us the confidence and data to envision the future of flight at Mars,” said Tzanetos.
More About Ingenuity
The Ingenuity Mars Helicopter was built by JPL, which also manages the project for NASA Headquarters. It is supported by NASA’s Science Mission Directorate. NASA’s Ames Research Center in California’s Silicon Valley and NASA’s Langley Research Center in Hampton, Virginia, provided significant flight performance analysis and technical assistance during Ingenuity’s development. AeroVironment, Qualcomm, and SolAero also provided design assistance and major vehicle components. Lockheed Space designed and manufactured the Mars Helicopter Delivery System. At NASA Headquarters, Dave Lavery is the program executive for the Ingenuity Mars helicopter.
For more information about Ingenuity:
https://mars.nasa.gov/technology/helicopter
News Media Contacts
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2024-171
Share
Details
Last Updated Dec 11, 2024 Related Terms
Ingenuity (Helicopter) Astrobiology Jet Propulsion Laboratory Mars Mars 2020 Perseverance (Rover) Explore More
3 min read Leader of NASA’s VERITAS Mission Honored With AGU’s Whipple Award
Article 2 days ago 3 min read Students Aim High at NASA JPL ‘Candy Toss’ Competition
Article 5 days ago 5 min read NASA JPL Unveils the Dr. Edward Stone Exploration Trail
Article 5 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
1 Min Read 2024 NESC Technical Update
Annual Report of NESC Technical Activities
On behalf of the NASA Engineering and Safety Center (NESC), I am pleased to provide you with the 2024 NESC Technical Update. This annual report summarizes the technical work, engineering advancements, and knowledge capture efforts we made in FY24. With support provided by members of our NASA community from across the centers, we focused our efforts on performing value-added independent testing, analysis, and assessments of NASA’s high-risk projects to ensure safety and mission success.
This report contains summaries of technical assessments requested by our stakeholders and the technical bulletins and innovative techniques that resulted from that assessment work. Several of the NASA Technical Fellows provide summaries of accomplishments in their respective disciplines, and expertise drawn from across the Agency is featured on the Center Pages.
We appreciate the opportunity to share our progress and highlight the accomplishments of our technically and culturally diverse, multidisciplinary, multigenerational teams. All NESC knowledge products are available at nasa.gov/nesc. As always, we value your feedback and engagement. Thank you for your continuing support of the NESC.
Timmy R. Wilson
Director, NASA Engineering and Safety Center
View the full article
-
By NASA
NASA Technical Memorandums (TM), NASA Technical Publications (TP), and NASA Contractor Reports (CR)
NASA/TP-20220015152 Optimization Approach for Wind Tunnel Fan Blade Strain Gage Correlation with Test Fixture Unknowns. NASA/TM-20220015363 Technology Maturation Report for Dam- age Arresting Composites under the Environmentally Responsible Aviation Project. NASA/TM-20220017053 Unique Science from the Moon in the Artemis Era NASA/TM-20220018183 Recommendations on Use of Commercial- Off-The-Shelf (COTS) Guidance for all Mission Risk Classifications – Phase II NASA/CR-20230002635 Assessment of Coated Particle Fuels for Space Nuclear Power and Propulsion Systems; A Report for the NESC Nuclear Power & Propulsion Technical Discipline Team NASA/TM-20230004147 Ceramic Capacitor Grain Size Analysis Using Electron Backscatter Diffraction (EBSD) NASA/TM-20230004154 Multi-Purpose Crew Vehicle (MPCV) Crew Module (CM) Side Hatch Dynamic Analysis NASA/TP-20230005922 Best Practices for the Design, Development, and Operation of Robust and Reliable Space Vehicle Guidance, Navigation, and Control Systems NASA/TM-20230006220 Metallurgical Factors that Govern ST Properties in Commercial 2219-T87 Thick Plate NASA/TP-20230006226 Evaluation of Through-thickness Microtextural Characteristics in 2219-T87 Thick Plate NASA/TM-20230006507 Flight Mechanics Analysis Tools Interoperability and Component Sharing NASA/TM-20230006648 Verification of Testing Standard for Carbon Dioxide (CO2) Partial Pressure in Extravehicular Activity (EVA) Suits NASA/TM-20230007658 ISS Universal Waste Management System (UWMS) Optical Sensor: Phase 1-Feasibility NASA/CR-20230010099 NASCAP Surface Charging Tool Development; Nascap-2k Additional Examples NASA/TM-20230010624 Self Reacting-Friction Stir Weld (SR-FSW) Anomalies NASA/TM-20230010640 Space-Shielding Radiation Dosage Code Evaluation; Phase 1: SHIELDOSE-2 Radiation-Assessment Code NASA/TM-20230010680 Shock Prediction Advancement: Transient Finite Energy (TFE) Shock Predictor NASA/TM-20230011306 NASA Exploration Systems Maintainability Standards for Artemis and Beyond NASA/CR-20230012105 A Compilation of Composite Overwrapped Pressure Vessel Research (2015–2021) NASA/TP-20230012154 Software Error Incident Categorizations in Aerospace NASA/TM-20230013348 Unconservatism of Linear-Elastic Fracture Mechanics (LEFM)Analysis Post Autofrettage NASA/TM-20230013386 Floating Potential Measurement Unit (FPMU) Data Processing Algorithm Development and Analysis Assessment
Technical Papers, Conference Proceedings, and Technical Presentations
Avionics
Chen, Y.: Statistical Interpretation of Life Test – Comparison between MIL and JEDEC requirements. NASA Electronic Parts and Packaging Program’s Electronic Technology Workshop, June 12-15, 2023. Franconi, N., Cook, T., Wilson, C., and George, A.: Comparison of Multi-Phase Power Converters and Power Delivery Networks for Next- Generation Space Architectures. 2023 IEEE Aerospace Conference, Big Sky, MT. pp. 1-15, DOI: 10.1109/AERO55745.2023.10115579. Green, C.; Haghani, N.; Hernandez-Pellerano, A.; Gheen, B.; Lanham, A.; Fraction, J.: MUSTANG: A Workhorse for NASA Spaceflight Avionics. IEEE Space Mission Challenges for Information Technology – IEEE Space Computing Conference Caltech (SMC-IT/SCC), Pasadena, CA. Hodson, R., Chen, Y., and Douglas, S.: NESC Recommendations on Use of COTS Parts for NASA Missions (Phase II) & The ILPM Pathfinder. NASA Electronic Parts and Packaging Program’s Electronic Technology Workshop, June 12-15, 2023. Hodson, R., Chen, Y., and Douglas, S.: Recommendations on Use of COTS Parts for NASA Missions. 2023 Space Computing Conference (SCC) Closed Session, El Segundo, CA, July 21, 2023. Powell, W.: SpaceVPX Interoperability Study Briefing. SOSA Architecture Meeting, November 1, 2022. Powell, W. and Hodson, R.: Advancing SpaceVPX Interoperability – Embedded Tech Trends, Chandler, AZ, January 23, 2023. Powell, W.: NASA’s Vision for Spaceflight Avionics. 2023 Space Computing Conference (SCC) Closed Session, El Segundo, CA, July 21, 2023. Rutishauser, D.; Prothro, J.; and Fail, J.: A System to Provide Deterministic Flight Software Operation and Maximize Multicore Processing Performance: The Safe and Precise Landing – Integrated Capabilities Evolution (SPLICE) Datapath. IEEE Space Mission Challenges for Information Technology – IEEE Space Computing Conference, Caltech, Pasadena, CA, July 18-21, 2023. Some, R.; Collier, P.; Hodson, R.; and Powell W.: SpaceVPX Interoperability. IEEE Space Computing Conference, Caltech, Pasadena, CA, USA – 18-21 July 2023. Flight Mechanics
Restrepo, R. L.: Trajectory Reverse Engineering: A General Strategy for Transferring Trajectories Between Flight Mechanics Tools, AAS 23-312. 33rd AAS/AIAA Space Flight Mechanics Meeting, Austin, TX, January 15-19, 2023. Loads and Dynamics
Allgood, J. and Decker, A.: Space Launch System Day of Launch Loads for Artemis I. Spacecraft and Launch Vehicle (SCLV) Dynamic Environments Workshop, El Segundo, CA, June 27-29, 2023. Bell, J.; Armand, S.; and Samareh, J.: Structural Evaluation and Optimization of Aeroshell Design Properties for Launch and Reentry Load Cases for Future AI-Informed Design Leveraging Large Datasets. Spacecraft and Launch Vehicle Dynamic Environments Workshop, El Segundo, CA, June 27-29, 2023. Blelloch, P.: Efficient Calculation of Random Stress Results. Spacecraft and Launch Vehicle Dynamic Environments Workshop, El Segundo, CA, June 27-29, 2023. Gardner, B.; Parrinello, A.; and Musser, C.: An Isogrid Panel Model for SEA. Spacecraft and Launch Vehicle Dynamic Environments Workshop, El Segundo, CA, June 27-29, 2023. Griggs, L.; Allgood, J.; Swatzell, S.; Moseley, J.; Oliver, N.; and Decker, A.: Space Launch System Artemis 1 Ascent Loads Reconstruction. Spacecraft and Launch Vehicle (SCLV) Dynamic Environments Workshop, El Segundo, CA, June 27-29, 2023. Hahn, S.; Lunetta, N.; Weathers, J.; Zuo, K.; and Decker, A.: Space Launch System Artemis 1 Rollout Loads Monitoring and Reconstruction. Spacecraft and Launch Vehicle (SCLV) Dynamic Environments Workshop, El Segundo, CA, June 27-29, 2023. Kennedy, M. and Blough, J.: Shocksat Testing and Analysis Results. Spacecraft and Launch Vehicle Dynamic Environments Workshop, El Segundo, CA, June 27-29, 2023. Kolaini, A.; Kinney, T.; and Johnson, D.: Guidance on Shock Qualification and Acceptance Test Requirements. Spacecraft and Launch Vehicle Dynamic Environments Workshop, El Segundo, CA, June 27-29, 2023. Patel, H. and Parsons, D.: Pressure Transducer Shock Testing. Spacecraft and Launch Vehicle Dynamic Environments Workshop, El Segundo, CA, June 27-29, 2023. Software
Prokop, L.: A Study of Historical Flight Software Error Incidents to Influence Fault-Tolerant Design. 2023 Flight Software Workshop, March 20-23, 2023, Pasadena, CA. Space Environments
Barrie, J.; Gouzman, I.; Hoffman, R.; Tighe, A.; Tagawa, M.; Miller, S.K.R.; de Groh, K.K.; Minow, J.I.; and Lao, Y.Y.: In-Situ Sensors for Monitoring the Space Environment and Its Effect Upon Satellite Materials [White paper]. Space Materials Workshop, July 24-28, 2023, virtual. Davis, V.A.; and Mandell, M.J.: NASCAP Surface Charging Tool Development, Nascap-2k Additional Examples. NASA CR-20230010099, Langley Research Center, Hampton, VA, July 2023. Dawkins, E.C.M.; Stober, G.; Janches, D.; Carrillo-Sánchez, J.D.; Lieberman, R.S.; Jacobi, C.; Moffat-Griffin, T.; Mitchell, N.J.; Cobbett, N.; Batista, P.P.; Andrioli, V.F.; Buriti, R.A.; Murphy, D.J.; Kero, J.; Gulbrandsen, N.; Tsutsumi, M.; Kozlovsky, A.; Kim, J.H.; Lee, C.; and Lester, M.: Solar Cycle and Long-term Trends in the Observed Peak of the Meteor Altitude Distributions by Meteor Radars. Geophysical Research Letters, 50, e2022GL101953. https://doi. org/10.1029/2022GL101953, 2023. Debchoudhury, S.; Lin, D.; Coffey, V.N.; Barjatya, A.; Minow, J.I.; and Parker, L.N.: Plasma Irregularities Observed by ISS FPMU: Multi- instrument Case-study and Modeling Results. Abstract SA52A-24, AGU Fall Meeting 2022, December 12-16, 2022, Chicago, IL. Debchoudhury, S.; Karan, D.; Barjatya, A.; Coffey, V.N.; and Minow, J.I.: Multi-layer Observations of Plasma Blobs and Bubbles using ICON, GOLD, and ISS FPMU. 2023 Coupling, Energetics, and Dynamics of Atmospheric Regions (CEDAR) Workshop, June 25-30, 2023, San Diego, CA. de Groh, K.; Stanton, J.S.; Minow, J.I.; Kimoto, Y.; Lord, E.M.; and Lao, Y.Y.: Space Materials Center [White paper]. Space Materials Workshop, July 24-28, 2023, virtual. Janches, D.; Bruzonne, J.S.; Weryk, R.J.; Hormaechea, J.L.; and Brunini, C.: Radar Observations of the Arid Meteor Shower Outburst from Comet 15P/Finlay. Planetary Science Journal, 4, 165, 2023, https://dx.doi.org/10.3847/PSJ/ace82a. Levine, J.S.: The Impact of Lunar Dust and Mars Dust on Human Exploration: Summary of the NASA Engineering and Safety Center (NESC) Workshop. Lunar Science Innovation Consortium Dust Mitigation Focus Group Meeting, January 19, 2023, virtual. Mertens, C.J.; Gronoff, G.; Zheng, Y.; Buhler, J.; Willis, E.M.; Petrenko, M.; Phoenix, D.; Jun, I.; and Minow, J.I.: NAIRAS Model Updates and Improvements to the Prediction of the Ionizing Radiation Environment from the Earth’s Surface to Geospace. Abstract SM35C-1769, AGU Fall Meeting 2022, December 12-16, 2022, Chicago, IL. Mertens, C.J.; Gronoff, G.; Phoenix, D.; Paul, S.N.; Mehta, P.M.; Zheng, Y.; and Nunez, M.: NAIRAS Model Nowcasting and Forecasting of the Aviation Radiation Environment. 20th Conference on Space Weather, American Meteorological Society, 103rd Annual Meeting, January 8-12, 2023, Denver, CO. Mertens, C.J.; Gronoff, G.; Zheng, Y.; Buhler, J.; Willis, E.M.; Petrenko, M.; Phoenix, D.; Jun, I.; and Minow, J.: NAIRAS Model Updates and Improvements to the Prediction of Ionizing Radiation from Earth’s Surface to Cislunar Environment. NOAA Space Weather Workshop, April 17-21, 2023, Boulder, CO. Mertens, C.J.; Gronoff, G.P.; Phoenix, D.; Zheng, Y.; Petrenko, M.; Buhler, J.; Jun, I.; Minow, J.I.; and Willis E.: NAIRAS Ionizing Radiation Model: Extension from Atmosphere to Space. NASA/TP- 20230006306, May 2023. Mertens, C.J.; Gronoff, G.; Zheng, Y.; Buhler, J.; Willis, E.M.; Petrenko, M.; Phoenix, D.; Jun, I.; and Minow, J.I.: NAIRAS Atmospheric and Space Radiation Environment Model. IEEE Nuclear and Space Radiation Effects Conference, July 24-28, 2023, Kansas City, MO. Mertens, C.J.; Gronoff, G.P.; Zheng, Y.; Petrenko, M.; Buhler, J.; Phoenix, D.; Willis, E.; Jun, I.; and Minow, J.: NAIRAS model run- on-request service at CCMC. Space Weather, 21, e2023SW003473. https://doi.org/10.1029/2023SW003473, 2023. Minow, J.I.; Meloy, R.; Parker, L.N.; and Collado-Vega, Y.: JWST Space Environments Launch Constraints. Fall 2022 Natural Environments Day- of-Launch Working Group, December 7, 2022, virtual. Minow, J.I.: Impacts of the Space Environment on Lunar Exploration. AIAA-2023-2467, AIAA SciTech Forum and Exposition, January 23-27, 2023, National Harbor, MD (invited). Minow, J.I.: Spacecraft Anomalies and Failures Workshop 2023: NASA Introductory Comments. Spacecraft Anomalies and Failures 2023 Workshop, March 29, 2023, Goddard Space Flight Center, Greenbelt, MD, and March 30, 2023, NRO HQ Westfields (invited). Minow, J.I.: SCAF Workshop 2023: Day 1 Final Comments and Wrap- up. Spacecraft Anomalies and Failures 2023 Workshop, March 29, 2023, Goddard Space Flight Center, Greenbelt, MD and March 30, 2023, NRO HQ Westfields (invited). Minow, J.I.: Low Energy Ionizing Radiation and Plasma Contributions to Radiation Dose in Materials at Sun-Earth Lagrange Points. 2023 Materials Research Society Spring Meeting and Exhibit, Symposium SF02: Materials in Space—Design and Testing, April 10-14, 2023, San Francisco, CA (invited). Minow, J.I.; Debchoudhury, S.; Barjatya, A.; Coffey, V.; and Parker, L.N.: Floating Potential Measurement Unit (FPMU) Data Processing Algorithm and Analysis Assessment. NASA/TM-20230013386, NESC- RP-19-01434, September 2023. Minow, J.I.: Surface Charging to High Voltages in the Space Environment. High Voltage Aerospace Systems Workshop, Energy & Mobility Technology, Systems, and Value Chain Conference and Expo, September 12-15, 2023, Cleveland, OH (invited). Minow, J.I.; Diekmann, A.M.; Willis, E.M.; and Coffey, V.N.: L2-Charged Particle Environment (L2-CPE) Low Energy Radiation Fluence Model. Radiation and its Effects on Components and Systems Conference (RADECS) 2023, September 25-29, 2023, Toulouse, France. Newheart, A.M.; Sazykin, S.; Coffey, V.N.; Chandler, M.O.; Coster, A. J.; Fejer, B.G.; Minow, J.I.; and Swenson, C.M.: Observations of Night-Time Equatorial Ionosphere Structure with the FPMU on board the International Space Station. Journal of Geophysical Research: Space Physics, 127, e2022JA030373. https://doi. org/10.1029/2022JA030373 2022. Parker, L.N.; Jun, I.; and Minow, J.I.: Introduction to the Virtual Collection on the Applied Space Environments Conference 2021. Journal of Spacecraft and Rockets, Vol. 60, No. 2, pp. 374-374, doi/ abs/10.2514/1.A35728, 2023. Schonberg, W. and Squire, M: Predicting High-speed Particle Impact Damage in Spacecraft Thermal Protection Systems. Journal of Space Safety Engineering. Accepted for publication. Schonberg, W. and Squire, M.: Toward a More Generalized Ballistic Limit Equation for Multi-Shock Shield. Acta Astronautica. Accepted for publication. Stober, G.; Weryk, R.; Janches, D.; Dawkins, E.C.M.; Günzkofer, F.; Hormaechea, J.L.; and Pokhotelov, D.: Polarization Dependency of Transverse Scattering and Collisional Coupling to the Ambient Atmosphere from Meteor Trails – Theory and Observations. Planetary and Space Science, 105768, ISSN 0032-0633, https://doi. org/10.1016/j.pss.2023.105768, 2023. Thomsen, D.L.; Jordan, T.M.; Milic, L.; and Girard, W.: Decreasing Proton Single Event Effects in CubeSats with Shielding. 2023 Single Event Effects (SEE) Symposium and Military and Aerospace Programmable Logic Devices (MAPLD) Workshop, May 15-19, 2023, La Jolla, CA. Valinia, A.; and Minow, J.: Required Space Weather Reconnaissance in the Artemis Era. 54th Lunar and Planetary Science Conference, March 13-17, 2023, The Woodlands, TX. Zheng, Y.; Jun, I.; Tu, W.; Sprits, Y.; Kim, W.; Miyoshi, Y.; Meier, M.; and Minow, J.: Overview, Progress and Next Steps for Our Understanding of the Near-Earth Space Radiation and Plasma Environment: Science and Applications. 28th International Union of Geodesy and Geophysics (IUGG) General Assembly, July 8-18, 2023, Berlin, Germany. Structures
Arndt, C. and TerMaath, S.: Characterization of the Damage Tolerance of Composite Overlays through Subspace Evaluation. ASCE Engineering Mechanics Institute, Georgia Tech, Atlanta, GA, June 6-9, 2023. Babuska, P.; Tai, W.; Goyal, V.; and Rodriguez, A.: Novel Test and Analysis Methodology for the Assessment of Joint under Re-entry Environment. AIAA Scitech 2023, National Harbor, MD, January 23-27, 2023. Bo, D.; Hwangbo, H.; Sharma, V.; Arndt, C.; and TerMaath, S.: A Randomized Subspace-based Approach for Dimensionality Reduction and Important Variable Selection. Journal of Machine Learning Research, 24: 1-3010.48550/arxiv.2106.01584, 2023. Bo, D.; Hwangbo, H.; and TerMaath, S.: Subspace Selection for High- Dimensional Experiments of Material Development Process. Institute of Industrial & Systems Engineers (IISE) Annual Conference and Expo, New Orleans, LA, May 20-23, 2023. Brust, F. W.; Punch, E.; Twombly, E.; and Wallace, J: Estimation Scheme for Weld Residual Stress Effect on Crack Opening Displacements. ASME Pressure Vessels and Piping Conference, Paper PVP2023-107396, Atlanta, GA, July 2023. Cardona, A.; Jegley, D.; and Lovejoy, A.: Manufacturing Trials of Integrally Stiffened Panels for Flight Applications. AIAA-2023-0781, SciTech 2023, National Harbor, MD, January 2023. Cline, J.; Dorsey, J.; Kang, D.; Doggett, W.; and Allen, D.: Ideas For Infusing In-Space Servicing, Assembly and Manufacturing Concepts into Nuclear Electric Propulsion Architectures. Joint Army-Navy-NASA- Air Force (JANNAF) 12th Spacecraft Propulsion Joint Subcommittee Meeting, Huntsville, AL, December 2022. Doggett, W.; Heppler, J.; Mahlin, M.; Pappa, R.; Teter, J.; Song, K.; White, B.; Wong, I.; and Mikulas, M.: Towers: Critical Initial Infrastructure for the Moon. AIAA-2023-0383, SciTech 2023, National Harbor, MD, January 2023. Fleishel, R.; Ferrell, W.; and TerMaath, S.: Fatigue-Damage Initiation at Process Introduced Internal Defects in Electron-Beam-Melted Ti- 6Al-4V. 2023. Metals 13:2, 350. Special Issue: Deformation, Fracture and Microstructure of Metallic Materials, https://doi.org/10.3390/ met13020350. Fleishel, R. and TerMaath, S.: Modeling fatigue overload behavior in microstructurally short cracks: connecting initiation and long crack behavior. ASCE Engineering Mechanics Institute, Georgia Tech, Atlanta, GA, June 6-9, 2023. Goyal, V.; Tuck-Lee, J.; Babuska, P.; and Zeitunian, E.: Lessons Learned in the Buckling Assessments of Space Structures. AIAA Scitech 2023, National Harbor, MD, January 23-27, 2023. Goyal, V.; Sagrillo, C.; Fannon, J.; Forth, S.; and Kezirian, M.: Space Systems Technical Guide for Composite Overwrapped Pressure Vessels. AIAA Scitech 2023, National Harbor, MD, January 23-27, 2023. Hart, D.; Balsara, Martinez, and TerMaath, S.: Multi-Scale Multi- Physics Bondline Strength Prediction Research. NATO Science & Technology Organization, Applied Vehicle Technology Panel (AVT-361) Research Workshop on Certification of Bonded Repair on Composite Aircraft Structures, Amsterdam, Netherlands, Oct 18-20, 2022. Kaleel, I., Ricks, T.M., Gustafson, P.A., Pineda, E.J., Bednarcyk, B.A., and Arnold, S.M. (2023) “Massively Multiscale Modeling using NASA Multiscale Analysis Tool through Partitioned Task-Parallel Approach” 2023 AIAA SciTech Forum, 23-27 January 2023, National Harbor, MD. Lin, L.: Correlation Study of SWOT Payload Acoustic Prediction and Test. AIAA SciTech, January 2023. Ma, X. and TerMaath, S.: Microstructural Analysis of Intergranular Stress Corrosion Cracking in 5xxx Series Aluminum Reinforced with a Composite Patch. 2023. Advances in the Analysis and Design of Marine Structures. Ringsberg & Guedes Soares (Eds), CRC Press. ISBN 978-1-032-50636-4. Pak, C.: Linear and Geometrically Nonlinear Structural Shape Sensing from Strain Data. AIAA Journal, Vol. 61, No. 2, 2023, pp. 907-922. Pak, C.: Finite Element Model Tuning Using Analytical Sensitivity Values. Journal of Aircraft, Articles in Advance (Vol. 60, No. 2 or 3), 2023. Panda, J.; Nguyen, M.P.; Keil. D.R.; and Hamm, K.R.: A Microphone Phased Array for Launch Acoustics Application. AIAA SciTech Conference, National Harbor, MD, (2023), AIAA Paper 2023-0790. Qu, X.; Shimizu, L.; Rome J.; Nordendale, N.; and Goyal, V.: Reliability- based Damage Tolerance Analysis for Additive Manufacturing Part. NAFEMS World Congress 2023, Tampa, FL, May 2023. Ricks, T. M.; Pineda, E. J.; Bednarcyk, B. A.; McCorkle, L. S.; Miller, S. G.; Murthy, P. L.; and Segal, K. N.: Multiscale Progressive Failure Analysis of 3D Woven Composites. 2022, Polymers, 14(20), 4340. Rome, J. and Goyal, V.: Moving Towards a Print Then Use Framework for Additive Manufacturing. ASME SSDM 2023, June 2023, SSDM2023-111806, Accepted. Rudd, M.T.; Eberlein, D.J.; Waters, W.A.; Gardner, N.W.; Schultz, M.R.; and Bisagni, C.: Analysis and Validation of a Scaled, Launch- Vehicle-Like Composite Cylinder under Axial Compression. Composite Structures, Volume 304, Part 1, January 2023. Rudd, M.T.; Schultz, M.R.; Gardner, N.W.; and Bisagni, C.: Test and Analysis of a Composite Conical-Cylindrical Shell. AIAA SciTech 2023 Forum, AIAA paper no. AIAA 2023-1525, National Harbor, MD, January 2023. Soltz, B.; Goyal, V.; Rome, J.; and Qu, X.: Structural Requirements, Process Simulation, and Residual Stress Characterization for Additively Manufactured Spaceflight Parts. AIAA 2023-2078, https:// doi.org/10.2514/6.2023-2078, AIAA Scitech 2023, National Harbor, MD, January 23-27, 2023. Soltz, B.; Sivess, A.; Hickman, M.; Ghazari, A. and Shimizu, L.: Static Load Testing and Analysis Recommendations For Space Vehicles. OTR 2023-00653, 33rd Aerospace Testing Seminar, The Aerospace Corporation, May 16, 2023. Song, K.; Mikulas, M.; Mahlin, M.; and Cassady, J.: Sizing and Design Tool for Tall Lunar Tower. AIAA-2023-0382, SciTech 2023, National Harbor, MD, January 2023. Hammel, J.: Utilizing 3D-DIC on the Mars 2020 Rover Wheel Assembly: Test-Analysis Correlation. IEEE, March 2023. Song, K.; Stark, A.; Amundsen, R.; Mikulas, M.; Mahlin, M.; and Cassady, J.: Sizing, Buckling, and Thermal-Structural Analysis of Tall Lunar Tower. 2023 AIAA ASCEND, Las Vegas, NV, October 2023. TerMaath, S.: Multi-scale Computational Structural Mechanics. Turing- Oden Workshop on Data Science and Machine Learning. Alan Turing Institute, London, January 25-27, 2023. TerMaath, S.; Crusenberry, C.; and Arndt, C.: Reduced Order Modeling of Progressive Failure in Composite/Metal Structure. 6th International Conference on Protective Structures, Auburn University, May 14-17, 2023. TerMaath, S.: Probabilistic multi-scale characterization and prediction of bimaterial bondline structural reliability. Canadian National Research Council, Ottawa, June 1, 2023. TerMaath, S.; Ingling, B.; Noland, J.; and Hart, D.: Evaluation of low-velocity impact damage in metal/composite layered structure. 8th International Symposium on Life-Cycle Civil Engineering (IALCCE). Milano, Italy, July 2-6, 2023. Twombly, E.; Hill, L.; Wilkowski, G.; Brust, B.; Lin, B.; and Tregoning, R.: Evaluation of the Inherent LBB Behavior of Small-Diameter Class 1 and 2 Nuclear Piping Systems. ASME Pressure Vessels and Piping Conference, Paper PVP2023-107685, Atlanta, GA, July 2023. Ytuarte, E.; Ragheb, H.; Sobey, A.; and TerMaath, S.: Peridynamics with stochastic bond strengths for determination of final failure in composite laminates. ASCE Engineering Mechanics Institute, Georgia Tech, Atlanta, GA, June 6-9, 2023.2022, Park City, UT. Systems Engineering
Driscoll, A. and Vining, G.: Debunking Stress Rupture Theories Using Weibull Regression Plots. Fall Technical Conference, October 12-14, 2022, Park City, UT Driscoll, A.: Advances in Stress Rupture Modeling: A Case Study for Predicting COPV Reliability. Joint Statistical Meetings, August 5-10, 2023, Toronto, Canada. Huang, Z. C.: Toward Closed Form Formulas for System Reliability and Confidence Quantification. 2023 Annual Reliability and Maintainability Symposium (RAMS), January 23-26, 2023, DOI: 10.1109/RAMS51473.2023.10088214. Parker, P. and Wilson, S.: Motivating Statistical Research for NASA Applications. Joint Statistical Meetings, August 5-10, 2023, Toronto, Canada. Thermal Control and Protection
Rickman, S.: Re-Architecting the NASA Wire Derating Approach, Phase II, Wire and Wire Bundle Ampacity Testing and Analysis. Aerospace Electrical Interconnect Symposium, October 2022, Houston, TX. Rickman, S.: Space Mission Thermal Control and Protection Challenges – Past, Present, and Future. The Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), June 2023, Orlando, FL. Rickman, S.: Introduction to Orbits. Rice/Envision Aerospace and Aviation Academy, June 2023, Houston, TX. Rickman, S.: Development and Application of a Novel Calorimetry Technique for the Study of Lithium-Ion Cell Thermal Runaway., International Conference on Environmental Systems (ICES), July 2023, Calgary, Canada. Rickman, S.: Introduction to On-Orbit Thermal Environments. Thermal and Fluids Analysis Workshop (TFAWS), August 2023, College Park, MD. Shafirovich, E. and Rickman, S.: A Warm Garage for a Lunar Rover, Commercial Lunar Payload Services. Survive the Night Technology Workshop, December 2022, Cleveland, OH. View the full article
-
By NASA
NESC Honor Awards are given each year to NASA employees, industry representatives, and other stakeholders for their efforts and achievements in engineering, leadership, teamwork, and communication. These awards formally recognize those who have made outstanding contributions to the NESC mission, demonstrate engineering and technical excellence, and foster an open environment.
2022 Honorees from left to right: (Front Row) Tim Wilson (NESC Director); Yuan Chen (LaRC), Elspeth Peterson (KSC), Grace Belancik (ARC), Jing Pei (LaRC), Mark Vande Hei (NESC Chief Astronaut); (Second row) James Walker (MSFC), Carlton Faller (JSC), Jason Vaughn (MSFC), Shane Cravens (Syncom Space Services, SSC), Shawn Brechbill (MSFC), Kevin Dickens (GRC); (Third row) Christopher Johnston (LaRC). NESC Director’s Award
Honors individuals for defending a technical position that conflicts with a program or organization’s initial or prevailing engineering perspectives and for taking personal initiative to foster clear and open communication and resolve controversial issues.
DANIEL L. DIETRICH – In recognition of the development and advocacy of the technical rationale to assess the safety and effectiveness of breathing systems for pilots of tactical aircraft.
NESC Leadership Award
Honors individuals for sustained leadership excellence demonstrated by establishing a vision, developing and managing a plan, and building consensus to proactively resolve conflicts and achieve results.
YUAN CHEN – In recognition of outstanding leadership in the electrical, electronic, electromechanical parts’ community and the development of recommendations on the use of commercial parts in NASA missions.
NIKOLAUS GRAVENSTEIN – In recognition of outstanding technical leadership in support of Verification of Testing Standard for Carbon Dioxide (CO2) Partial Pressure in Extravehicular Activity Suits.
ELSPETH M. PETERSEN – In recognition of outstanding leadership to the Spacesuit Water Membrane Evaporator Assessment Team in negotiating creative solutions and facility challenges.
PATRICK A. SIMPKINS – In recognition of outstanding technical leadership in support of numerous NESC assessments to reduce risk to NASA’s most critical human and robotic spaceflight programs.
NESC Engineering Excellence Award
Honors individuals for making significant engineering contributions, developing innovative approaches, and ensuring appropriate levels of engineering rigor are applied to the resolution of technical issues in support of the NESC mission.
KEVIN W. DICKENS – In recognition of engineering excellence and sustained commitment to the NESC Propulsion Technical Discipline Team and NASA missions.
View the full article
-
By NASA
After reflecting on the more than 1,200 assessments completed by the NESC over the last 20 years, Director Tim Wilson selected these assessments as his top three. They were selected because they would likely have the greatest and most lasting impact on human life and the furtherance of the NESC mission. He shared why their effects were so far-reaching.
2013-2019
Assessing Risks of Frangible Joint Designs
At the request of the Commercial Crew Program, the NESC took on an empirical test program of frangible joints to provide confidence in their use for human spaceflight. “Many programs use these joints, so understanding the margins and what drives their designs has helped us keep flight crews safe and make missions successful,” said Mr. Wilson.
The joints provide a debris-free separation of launch vehicle stages and payload fairings. To determine the effects various design parameters and environmental factors have on jointseparation capability, the NESC conducted more than 140 tests on a variety of designs and generated more than 100 million lines of data that were used to anchor models, develop design sensitivities, and make reliability estimates. Their comprehensive work was foundational to later assessments for the Space Launch System, Orion, and Launch Services Programs. The NESC also started the FJ Working Group, which serves as the Agency’s technical community of practice. It ensures programs understand the risks associated with their use and is proactive in ensuring NASA is implementing safe and reliable FJ technologies.
2018-2021
Pilot Breathing Assessment
When the U.S. Navy was experiencing an increase in pilot physiological episodes across their F/A-18 fleet that was leading to mission aborts, “No one really understood what was going on or why,” said Mr. Wilson. “It was a difficult problem, and our NESC team was able to come up with compelling answers.”
Over the NESC’s three-year study, its Pilot Breathing Assessment (PBA) team designed novel instrumentation to measure pilot physiological states and interactions with aircraft life support systems. NASA test pilots flew instrumented NASA F/A-18 and F-15 aircraft through pre-specified flight profiles while wearing specialized breathing equipment augmented with an advanced sensor system. Aligned data streams identified pilot/aircraft interactions with the potential for negative cognitive and physiological impact. After more than 100 scripted flights and 250 million data points, the PBA team determined that breathing pressures and airflows were often mismatched, increasing a pilot’s efforts to maintain sufficient ventilation. The PBA team’s work has benefited the field of aviation and the advancement of human system integration in modern aircraft and has direct application for NASA vehicles such as the T-38, F-15, X-59, and the ISS.
2020-2023
Unconservatism of LEFM Analysis Post Autofrettage
The NESC has invested significant time and resources to understanding the complex behavior of composite overwrapped pressure vessels (COPV), which are used extensively in space-flight. Most recently, an NESC team found there was a lack of conservatism in the damage tolerance analyses conducted on COPV liners using linear-elastic fracture mechanics (LEFM), particularly in understanding the influence of autofrettage (AF).
During AF, a COPV is subjected to high pressures to compress the inner surfaces, making them less susceptible to operational stresses later. In verifying damage tolerance life, the team found that separating the AF cycle from subsequent elastic cycles in LEFM analysis led to unconservative life predictions. Cracks remained open during compressive cycles after AF and allowed for a larger stress range to contribute to crack growth in each subsequent elastic cycle. The team provided corrections to NASGRO (programs that analyze fracture and fatigue crack growth) to make predictions less unconservative. “I’m convinced that someday crew will fly, come home, disembark, and never know that it was the improvements to those analytical tools made by this NESC team that kept them safe. I think it’s going to have wide-ranging impact.”
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.