Jump to content

Recommended Posts

  • Publishers
Posted
Clouds over the Arctic Ocean almost look like the sea's waves in this image from NASA's Terra satellite. The right side of the image has a brown-orange hue, almost like coffee with a little cream in it, due to the eclipse's shadow passing over them.
NASA Goddard MODIS Rapid Response Team

During the morning of March 20, 2015, a total solar eclipse was visible from parts of Europe, and a partial solar eclipse from northern Africa and northern Asia. NASA’s Terra satellite passed over the Arctic Ocean on March 20 at 10:45 UTC (6:45 a.m. EDT) and captured the eclipse’s shadow over the clouds in the Arctic Ocean.

Terra launched 25 years ago on Dec. 18, 1999. Approximately the size of a small school bus, the Terra satellite carries five instruments that take coincident measurements of the Earth system: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and Earth’s Radiant Energy System (CERES), Multi-angle Imaging Spectroradiometer (MISR), Measurements of Pollution in the Troposphere (MOPITT), and Moderate Resolution Imaging Spectroradiometer (MODIS).

On Nov. 28, 2024, one of Terra’s power-transmitting shunt units failed. A response team reviewed Terra’s status and discussed potential impacts and options.  Consequently, the team placed ASTER into Safe Mode.  As a result, ASTER data are not currently being collected. All other instruments continue uninterrupted.

Image Credit: NASA Goddard MODIS Rapid Response Team

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Data from the SWOT satellite was used to calculate average water levels for lakes and reservoirs in the Ohio River Basin from July 2023 to November 2024. Yellow indicates values greater than 1,600 feet (500 meters) above sea level; dark purple represents water levels less than 330 feet (100 meters). Data from the U.S.-European Surface Water and Ocean Topography mission gives researchers a detailed look at lakes and reservoirs in a U.S. watershed.
      The Ohio River Basin stretches from Pennsylvania to Illinois and contains a system of reservoirs, lakes, and rivers that drains an area almost as large as France. Researchers with the SWOT (Surface Water and Ocean Topography) mission, a collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales), now have a new tool for measuring water levels not only in this area, which is home to more than 25 million people, but in other watersheds around the world as well.
      Since early 2023, SWOT has been measuring the height of nearly all water on Earth’s surface — including oceans, lakes, reservoirs, and rivers — covering nearly the entire globe at least once every 21 days. The SWOT satellite also measures the horizontal extent of water in freshwater bodies. Earlier this year, the mission started making validated data publicly available.
      “Having these two perspectives — water extent and levels — at the same time, along with detailed, frequent coverage over large areas, is unprecedented,” said Jida Wang, a hydrologist at the University of Illinois Urbana-Champaign and a member of the SWOT science team. “This is a groundbreaking, exciting aspect of SWOT.”
      Researchers can use the mission’s data on water level and extent to calculate how the amount of water stored in a lake or reservoir changes over time. This, in turn, can give hydrologists a more precise picture of river discharge — how much water moves through a particular stretch of river.
      The visualization above uses SWOT data from July 2023 to November 2024 to show the average water level above sea level in lakes and reservoirs in the Ohio River Basin, which drains into the Mississippi River. Yellow indicates values greater than 1,600 feet (500 meters), and dark purple represents water levels less than 330 feet (100 meters). Comparing how such levels change can help hydrologists measure water availability over time in a local area or across a watershed.
      Complementing a Patchwork of Data
      Historically, estimating freshwater availability for communities within a river basin has been challenging. Researchers gather information from gauges installed at certain lakes and reservoirs, from airborne surveys, and from other satellites that look at either water level or extent. But for ground-based and airborne instruments, the coverage can be limited in space and time. Hydrologists can piece together some of what they need from different satellites, but the data may or may not have been taken at the same time, or the researchers might still need to augment the information with measurements from ground-based sensors.
      Even then, calculating freshwater availability can be complicated. Much of the work relies on computer models. “Traditional water models often don’t work very well in highly regulated basins like the Ohio because they have trouble representing the unpredictable behavior of dam operations,” said George Allen, a freshwater researcher at Virginia Tech in Blacksburg and a member of the SWOT science team.
      Many river basins in the United States include dams and reservoirs managed by a patchwork of entities. While the people who manage a reservoir may know how their section of water behaves, planning for water availability down the entire length of a river can be a challenge. Since SWOT looks at both rivers and lakes, its data can help provide a more unified view.
      “The data lets water managers really know what other people in these freshwater systems are doing,” said SWOT science team member Colin Gleason, a hydrologist at the University of Massachusetts Amherst.
      While SWOT researchers are excited about the possibilities that the data is opening up, there is still much to be done. The satellite’s high-resolution view of water levels and extent means there is a vast ocean of data that researchers must wade through, and it will take some time to process and analyze the measurements.
      More About SWOT
       The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations.  The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
      To learn more about SWOT, visit:
      https://swot.jpl.nasa.gov
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-176
      Share
      Details
      Last Updated Dec 17, 2024 Related Terms
      SWOT (Surface Water and Ocean Topography) Jet Propulsion Laboratory Water on Earth Explore More
      5 min read NASA Mars Orbiter Spots Retired InSight Lander to Study Dust Movement
      Article 1 day ago 5 min read NASA’s Perseverance Rover Reaches Top of Jezero Crater Rim
      Article 5 days ago 5 min read NASA’s Juno Mission Uncovers Heart of Jovian Moon’s Volcanic Rage
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      ESA/Hubble & NASA, R. Windhorst, W. Keel This NASA/ESA Hubble Space Telescope image features a spiral galaxy, named UGC 10043. We don’t see the galaxy’s spiral arms because we are seeing it from the side. Located roughly 150 million light-years from Earth in the constellation Serpens, UGC 10043 is one of the somewhat rare spiral galaxies that we see edge-on.
      This edge-on viewpoint makes the galaxy’s disk appear as a sharp line through space, with its prominent dust lanes forming thick bands of clouds that obscure our view of the galaxy’s glow. If we could fly above the galaxy, viewing it from the top down, we would see this dust scattered across UGC 10043, possibly outlining its spiral arms. Despite the dust’s obscuring nature, some active star-forming regions shine out from behind the dark clouds. We can also see that the galaxy’s center sports a glowing, almost egg-shaped ‘bulge’, rising far above and below the disk. All spiral galaxies have a bulge similar to this one as part of their structure. These bulges hold stars that orbit the galactic center on paths above and below the whirling disk; it’s a feature that isn’t normally obvious in pictures of galaxies. The unusually large size of this bulge compared to the galaxy’s disk is possibly due to UGC 10043 siphoning material from a nearby dwarf galaxy. This may also be why its disk appears warped, bending up at one end and down at the other.
      Like most full-color Hubble images, this image is a composite, made up of several individual snapshots taken by Hubble at different times, each capturing different wavelengths of light. One notable aspect of this image is that the two sets of data that comprise this image were collected 23 years apart, in 2000 and 2023! Hubble’s longevity doesn’t just afford us the ability to produce new and better images of old targets; it also provides a long-term archive of data which only becomes more and more useful to astronomers.
      View the full article
    • By European Space Agency
      Launched in May 2024, ESA’s EarthCARE satellite is nearing the end of its commissioning phase with the release of its first data on clouds and aerosols expected early next year. In the meantime, an international team of scientists has found an innovative way of applying artificial intelligence to other satellite data to yield 3D profiles of clouds.
      This is particularly news for those eagerly awaiting data from EarthCARE in their quest to advance climate science.
      View the full article
    • By NASA
      5 Min Read Scientists Share Early Results from NASA’s Solar Eclipse Experiments 
      On April 8, 2024, a total solar eclipse swept across a narrow portion of the North American continent from Mexico’s Pacific coast to the Atlantic coast of Newfoundland, Canada. This photo was taken from Dallas, Texas. Credits:
      NASA/Keegan Barber On April 8, 2024, a total solar eclipse swept across North America, from the western shores of Mexico, through the United States, and into northeastern Canada. For the eclipse, NASA helped fund numerous research projects and called upon citizen scientists in support of NASA’s goal to understand how our home planet is affected by the Sun – including, for example, how our star interacts with Earth’s atmosphere and affects radio communications.  
      At a press briefing on Tuesday, Dec. 10, scientists attending the annual meeting of the American Geophysical Union in Washington, D.C., reported some early results from a few of these eclipse experiments. 
      “Scientists and tens of thousands of volunteer observers were stationed throughout the Moon’s shadow,” said Kelly Korreck, eclipse program manager at NASA Headquarters in Washington. “Their efforts were a crucial part of the Heliophysics Big Year – helping us to learn more about the Sun and how it affects Earth’s atmosphere when our star’s light temporarily disappears from view.”
      Changes in the Corona
      On April 8, the Citizen CATE 2024 (Continental-America Telescopic Eclipse) project stationed 35 observing teams from local communities from Texas to Maine to capture images of the Sun’s outer atmosphere, or corona, during totality. Their goal is to see how the corona changed as totality swept across the continent.
      On Dec. 10, Sarah Kovac, the CATE project manager at the Southwest Research Institute in Boulder, Colorado, reported that, while a few teams were stymied by clouds, most observed totality successfully — collecting over 47,000 images in all. 
      These images were taken in polarized light, or light oriented in different directions, to help scientists better understand the processes that shape the corona.
      This preliminary movie from the Citizen CATE 2024 project stitches together polarized images of the solar corona taken from different sites during the total solar eclipse on April 8, 2024. SwRI/Citizen CATE 2024/Dan Seaton/Derek Lamb Kovac shared the first cut of a movie created from these images. The project is still stitching together all the images into the final, hour-long movie, for release at a later time. 
      “The beauty of CATE 2024 is that we blend cutting-edge professional science with community participants from all walks of life,” Kovac said. “The dedication of every participant made this project possible.” 
      Meanwhile, 50,000 feet above the ground, two NASA WB-57 aircraft chased the eclipse shadow as it raced across the continent, observing above the clouds and extending their time in totality to approximately 6 minutes and 20 seconds. 
      On board were cameras and spectrometers (instruments that analyze different wavelengths of light) built by multiple research teams to study the corona. 
      This image of the total solar eclipse is a combination of 30 50-millisecond exposures taken with a camera mounted on one of NASA’s WB-57 aircraft on April 8, 2024. It was captured in a wavelength of light emitted by ionized iron atoms called Fe XIV. This emission highlights electrified gas, called plasma, at a specific temperature (around 3.2 million degrees Fahrenheit) that often reveals arch-like structures in the corona. B. Justen, O. Mayer, M. Justen, S. Habbal, and M. Druckmuller On Dec. 10, Shadia Habbal of the University of Hawaii, who led one of the teams, reported that their instruments collected valuable data, despite one challenge. Cameras they had mounted on the aircraft’s wings experienced unexpected vibrations, which caused some of the images to be slightly blurred.
      However, all the cameras captured detailed images of the corona, and the spectrometers, which were located in the nose of the aircraft, were not affected. The results were so successful, scientists are already planning to fly similar experiments on the aircraft again.
      “The WB-57 is a remarkable platform for eclipse observations that we will try to capitalize on for future eclipses,” Habbal said. 
      Affecting the Atmosphere
      On April 8, amateur or “ham” radio operators sent and received signals to one another before, during, and after the eclipse as part of the Ham Radio Science Citizen Investigation (HamSCI) Festivals of Eclipse Ionospheric Science. More than 6,350 amateur radio operators generated over 52 million data points to observe how the sudden loss of sunlight during totality affects their radio signals and the ionosphere, an electrified region of Earth’s upper atmosphere. 
      Students from Case Western Reserve University operate radios during the 2024 total solar eclipse. HamSCI/Case Western Reserve University Radio communications inside and outside the path of totality improved at some frequencies (from 1-7 MHz), showing there was a reduction in ionospheric absorption. At higher frequencies (10 MHz and above), communications worsened. 
      Results using another technique, which bounced high-frequency radio waves (3-30 MHz) off the ionosphere, suggests that the ionosphere ascended in altitude during the eclipse and then descended to its normal height afterward. 
      “The project brings ham radio operators into the science community,” said Nathaniel Frissell, a professor at the University of Scranton in Pennsylvania and lead of HamSCI. “Their dedication to their craft made this research possible.”  
      Also looking at the atmosphere, the Nationwide Eclipse Ballooning Project organized student groups across the U.S. to launch balloons into the shadow of the Moon as it crossed the country in April 2024 and during a solar eclipse in October 2023. Teams flew weather sensors and other instruments to study the atmospheric response to the cold, dark shadow. 
      The eclipse’s shadow was captured from a camera aboard Virginia Tech’s balloon as part of the Nationwide Eclipse Ballooning Project on April 8, 2024. Nationwide Eclipse Ballooning Project/Virginia Tech This research, conducted by over 800 students, confirmed that eclipses can generate ripples in Earth’s atmosphere called atmospheric gravity waves. Just as waves form in a lake when water is disturbed, these waves also form in the atmosphere when air is disturbed. This project, led by Angela Des Jardins of Montana State University in Bozeman, also confirmed the presence of these waves during previous solar eclipses. Scientists think the trigger for these waves is a “hiccup” in the tropopause, a layer in Earth’s atmosphere, similar to an atmospheric effect that is observed during sunset. 
      “Half of the teams had little to no experience ballooning before the project,” said Jie Gong, a team science expert and atmospheric scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “But their hard work and research was vital in this finding.”
      By Abbey Interrante and Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md. 
      Share








      Details
      Last Updated Dec 10, 2024 Related Terms
      2024 Solar Eclipse Citizen Science Goddard Space Flight Center Heliophysics Solar Eclipses The Sun Uncategorized Explore More
      8 min read NASA’s Hubble Celebrates Decade of Tracking Outer Planets


      Article


      21 hours ago
      3 min read Annual Science Conference to Highlight NASA Research


      Article


      4 days ago
      2 min read Hubble Spots a Spiral in the Celestial River


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By European Space Agency
      Less than a week after its launch, the Copernicus Sentinel-1C satellite has delivered its first radar images of Earth – offering a glimpse into its capabilities for environmental monitoring. These initial images feature regions of interest, including Svalbard in Norway, the Netherlands, and Brussels, Belgium.
      View the full article
  • Check out these Videos

×
×
  • Create New...