Jump to content

Artemis II Core Stage Vertical Integration Begins at NASA Kennedy


Recommended Posts

  • Publishers
Posted

NASA has taken a big step forward in how engineers will assemble and stack future SLS (Space Launch System) rockets for Artemis Moon missions inside the Vehicle Assembly Building (VAB) at the agency’s Kennedy Space Center in Florida.

The VAB’s High Bay 2 has been outfitted with new tooling to facilitate the vertical integration of the SLS core stage. That progress was on full display in mid-December when teams suspended the fully assembled core stage 225 feet in the air inside the high bay to complete vertical work before it is stacked on mobile launcher 1, allowing teams to continue solid rocket booster stacking simultaneously inside High Bay 3 for Artemis II.

The fully assembled SLS (Space Launch System) core stage for the Artemis II test flight is suspended 225 feet in the air inside the newly renovated High Bay 2 at Kennedy’s Vehicle Assembly Building. The core stage was lifted to enable engineers to complete work before it is stacked on mobile launcher 1 with other rocket elements. With the move to High Bay 2, technicians now have 360-degree tip to tail access to the core stage, both internally and externally.
The fully assembled SLS (Space Launch System) core stage for the Artemis II test flight is suspended 225 feet in the air inside the newly renovated High Bay 2 at Kennedy’s Vehicle Assembly Building. The core stage was lifted to enable engineers to complete work before it is stacked on mobile launcher 1 with other rocket elements. With the move to High Bay 2, technicians now have 360-degree tip to tail access to the core stage, both internally and externally.
NASA

With the move to High Bay 2, technicians with NASA and Boeing now have 360-degree tip to tail access to the core stage, both internally and externally. Michigan-based supplier Futuramic Tool and Engineering led the design and build of the Core Stage Vertical Integration Center tool that will hold the core stage in a vertical position.

“High Bay 2 tooling was originally scheduled to be complete for Artemis III. We had an opportunity to get it done earlier and that will put us in a good posture to complete work earlier than planned prior to moving the core stage for Artemis II into the full integrated stack over into in High Bay 3,” said Chad Bryant, deputy manager of the NASA SLS Stages Office. “This gives us an opportunity to go in and learn how to rotate, lift, and move the core stage into the high bay.”

This move also doubles the footprint of useable space within the VAB, giving engineers access to both High Bay 2 and High Bay 3 simultaneously, while also freeing up space at NASA’s Michoud Assembly Facility in New Orleans to continue work on the individual elements for future SLS core stages.

High Bay 2 has a long history of supporting NASA exploration programs: during Apollo, High Bay 2, one of four high bays inside the VAB, was used to stack the Saturn V rocket. During the Space Shuttle Program, the high bay was used for external tank checkout and storage and as an extra storage area for the shuttle.

Under the new assembly model beginning with Artemis III, all the major structures for the SLS core stage will continue to be fully produced and manufactured at NASA Michoud. Upon completion of manufacturing and thermal protection system application, the engine section will be shipped to Kennedy for final outfitting.

The 212-foot-tall SLS (Space Launch System) core stage for NASA Artemis II is seen being moved from a horizontal position to a vertical position in High Bay 2 at the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. With the move to High Bay 2, NASA and Boeing technicians now have 360-degree access to the core stage both internally and externally. (NASA)

“Core stage 3 marks a significant change in the way we build core stages,” said Steve Wofford, manager of the SLS Stages Office. “The vertical capability in High Bay 2 allows us to perform parallel processing from the top to bottom of the stage. It’s a much more efficient way to build core stages. This new capability will streamline final production efforts, allowing our team to have 360-degree access to the stage, both internally and externally.”

The fully assembled core stage for Artemis II arrived July 23, 2024, at Kennedy, where it remained horizontal inside the VAB transfer aisle until its recent lift into the newly outfitted high bay.

Teams at NASA Michoud are outfitting the remaining core stage elements for Artemis III and preparing to horizontally join them. The four RS-25 engines for the Artemis III mission are complete at NASA’s Stennis Space Center in Bay St. Louis, Mississippi, and will be transported to NASA Kennedy in 2025. Major core stage and exploration upper stage structures are in work at NASA Michoud for Artemis IV and beyond.

NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

News Media Contact

Jonathan Deal
Marshall Space Flight Center
Huntsville, Ala.
256-544-0034

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A Massachusetts Institute of Technology Lincoln Laboratory pilot controls a drone during NASA’s In-Time Aviation Safety Management System test series in collaboration with a George Washington University team July 17-18, 2024, at the U.S. Army’s Fort Devens in Devens, Massachusetts. MIT Lincoln Laboratory/Jay Couturier From agriculture and law enforcement to entertainment and disaster response, industries are increasingly turning to drones for help, but the growing volume of these aircraft will require trusted safety management systems to maintain safe operations.
      NASA is testing a new software system to create an improved warning system – one that can predict hazards to drones before they occur. The In-Time Aviation Safety Management System (IASMS) will monitor, assess, and mitigate airborne risks in real time. But making sure that it can do all that requires extensive experimentation to see how its elements work together, including simulations and drone flight tests.
      “If everything is going as planned with your flight, you won’t notice your in-time aviation safety management system working,” said Michael Vincent, NASA acting deputy project manager with the System-Wide Safety project at NASA’s Langley Research Center in Hampton, Virginia. “It’s before you encounter an unusual situation, like loss of navigation or communications, that the IASMS provides an alert to the drone operator.”
      The team completed a simulation in the Human-Autonomy Teaming Laboratory at NASA’s Ames Research Center in California’s Silicon Valley on March 5 aimed at finding out how critical elements of the IASMS could be used in operational hurricane relief and recovery.
      During this simulation, 12 drone pilots completed three 30-minute sessions where they managed up to six drones flying beyond visual line of sight to perform supply drops to residents stranded after a severe hurricane. Additional drones flew scripted search and rescue operations and levee inspections in the background. Researchers collected data on pilot performance, mission success, workload, and perceptions of the experiences, as well as the system’s usability.
      This simulation is part of a longer-term strategy by NASA to advance this technology. The lessons learned from this study will help prepare for the project’s hurricane relief and recovery flight tests, planned for 2027.  
      As an example of this work, in the summer of 2024 NASA tested its IASMS during a series of drone flights in collaboration with the Ohio Department of Transportation in Columbus, Ohio, and in a separate effort, with three university-led teams.
      For the Ohio Department of Transportation tests, a drone flew with the NASA-developed IASMS software aboard, which communicated back to computers at NASA Langley. Those transmissions gave NASA researchers input on the system’s performance.
      Students from the Ohio State University participate in drone flights during NASA’s In-Time Aviation Safety Management System test series in collaboration with the Ohio Department of Transportation from March to July 2024 at the Columbus Aero Club in Ohio. NASA/Russell Gilabert NASA also conducted studies with The George Washington University (GWU), the University of Notre Dame, and Virginia Commonwealth University (VCU). These occurred at the U.S. Army’s Fort Devens in Devens, Massachusetts with GWU; near South Bend, Indiana with Notre Dame; and in Richmond, Virginia with VCU. Each test included a variety of types of drones, flight scenarios, and operators.
      Students from Virginia Commonwealth University walk toward a drone after a flight as part of NASA’s In-Time Aviation Safety Management System (IASMS) test series July 16, 2024, in Richmond, Virginia. NASA/Dave Bowman Each drone testing series involved a different mission for the drone to perform and different hazards for the system to avoid. Scenarios included, for example, how the drone would fly during a wildfire or how it would deliver a package in a city. A different version of the NASA IASMS was used to fit the scenario depending on the mission, or depending on the flight area.
      Students from the University of Notre Dame prepare a small drone for takeoff as part of NASA’s In-Time Aviation Safety Management System (IASMS) university test series, which occurred on August 21, 2024 in Notre Dame, Indiana.University of Notre Dame/Wes Evard When used in conjunction with other systems such as NASA’s Unmanned Aircraft System Traffic Management, IASMS may allow for routine drone flights in the U.S. to become a reality. The IASMS adds an additional layer of safety for drones, assuring the reliability and trust if the drone is flying over a town on a routine basis that it remains on course while avoiding hazards along the way.
      “There are multiple entities who contribute to safety assurance when flying a drone,” Vincent said. “There is the person who’s flying the drone, the company who designs and manufactures the drone, the company operating the drone, and the Federal Aviation Administration, who has oversight over the entire National Airspace System. Being able to monitor, assess and mitigate risks in real time would make the risks in these situations much more secure.”
      All of this work is led by NASA’s System-Wide Safety project under the Airspace Operations and Safety program in support of the agency’s Advanced Air Mobility mission, which seeks to deliver data to guide the industry’s development of electric air taxis and drones.
      Share
      Details
      Last Updated Apr 02, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.gov Related Terms
      Advanced Air Mobility Aeronautics Research Mission Directorate Airspace Operations and Safety Program Ames Research Center Armstrong Flight Research Center Drones & You Flight Innovation Langley Research Center System-Wide Safety Explore More
      2 min read Artemis Astronauts & Orion Leadership Visit NASA Ames
      Article 1 hour ago 7 min read ARMD Solicitations (ULI Proposals Invited)
      Article 2 days ago 2 min read The Sky’s Not the Limit: Testing Precision Landing Tech for Future Space Missions
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Astronauts Victor Glover and Christina Koch tour the Arc Jet Facility at NASA’s Ames Research Center, learning more about the testing equipment’s capabilities to analyze thermal protection systems from George Raiche, thermophysics facilities branch chief at Ames.NASA/Donald Richey As NASA prepares to send astronauts to the Moon aboard the Orion spacecraft, research, testing, and development at NASA’s Ames Research Center in California’s Silicon Valley has played a critical role.
      Recently, Ames welcomed Artemis II astronauts Christina Koch and Victor Glover and Orion leaders Debbie Korth, deputy program manager, and Luis Saucedo, deputy crew and service module manager, to tour Ames facilities that support the Orion Program and celebrate the achievements of employees.
      The group started their visit at the Arc Jet Complex, where researchers use extremely hot, high-speed gases to simulate the intense heat of atmospheric reentry before visiting the Sensors & Thermal Protection Systems Advanced Research Laboratories. The team works to develop sensors and flight instrumentation that measure heat shield response throughout a mission.
      These systems were used to develop and test Orion’s thermal protection system to ensure the safety of astronauts during future missions. After the successful return of the Artemis I Orion spacecraft, Ames research was essential when analyzing unexpected charring loss on the heat shield.
      Debbie Korth, Orion deputy program manager, presents awards to the Ames workforce at the Orion Circle of Excellence Awards Ceremony, while astronauts Christina Koch and Victor Glover look on.NASA/Donald Richey The visit culminated in an award ceremony to honor employees with outstanding performance and a legacy of service to the Orion Program. Thirty-two employees were honored for their individual or team contributions.
      “The Ames workforce has played an important role in developing, testing, and validating the Orion spacecraft’s thermal protection system as well as supporting its software and guidance, navigation, and control,” said Eugene Tu, NASA Ames center director. “I’m pleased to see their contributions recognized and celebrated by program leadership and two of the astronauts whose safety and success were in mind when ensuring these systems are safe, reliable, and the highest quality possible.”
      Share
      Details
      Last Updated Apr 02, 2025 Related Terms
      Ames Research Center Artemis Christina H. Koch Exploration Systems Development Mission Directorate General Orion Program Victor J. Glover Explore More
      2 min read What Are the Dangers of Going to Space? We Asked a NASA Expert: Episode 55
      Article 1 hour ago 2 min read NASA Receives 10 Nominations for the 29th Annual Webby Awards
      Article 1 day ago 4 min read NASA Trains for Orion Water Recovery Ahead of Artemis II Launch
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Ames Research Center
      Orion Spacecraft
      Arc Jet Complex
      Thermal Protection Materials Branch
      View the full article
    • By NASA
      The Roscosmos Soyuz MS-27 spacecraft will launch from the Baikonur Cosmodrome in Kazakhstan to the International Space Station with (pictured left to right) NASA astronaut Jonny Kim and Roscosmos cosmonauts Sergey Ryzhikov and Alexey Zubritsky.Credit: Gagarin Cosmonaut Training Center NASA astronaut Jonny Kim will launch aboard the Roscosmos Soyuz MS-27 spacecraft to the International Space Station, accompanied by cosmonauts Sergey Ryzhikov and Alexey Zubritsky, where they will join the Expedition 72/73 crew in advancing scientific research.
      Kim, Ryzhikov, and Zubritsky will lift off at 1:47 a.m. EDT Tuesday, April 8 (10:47 a.m. Baikonur time) from the Baikonur Cosmodrome in Kazakhstan.
      Watch live launch and docking coverage on NASA+. Learn how to watch NASA content through a variety of platforms.
      After a two-orbit, three-hour trajectory to the station, the spacecraft will dock automatically to the station’s Prichal module at approximately 5:03 a.m. Shortly after, hatches will open between Soyuz and the space station.
      Once aboard, the trio will join NASA astronauts Nichole Ayers, Anne McClain, and Don Pettit, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonauts Alexey Ovchinin, Kirill Peskov, and Ivan Vagner.
      NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
      Tuesday, April 8
      12:45 a.m. – Launch coverage begins on NASA+.
      1:47 a.m. – Launch
      4:15 a.m. – Rendezvous and docking coverage begins on NASA+.
      5:03 a.m. – Docking
      7 a.m. – Hatch opening and welcome remarks coverage begins on NASA+.
      7:20 a.m. – Hatch opening
      The trio will spend approximately eight months aboard the orbital laboratory as Expedition 72 and 73 crew members before returning to Earth in December. This will be the first flight for Kim and Zubritsky, and the third for Ryzhikov.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of the Artemis campaign in preparation for future human missions to Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 02, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Humans in Space ISS Research Johnson Space Center Space Operations Mission Directorate View the full article
    • By NASA
      NASA’s Stennis Space Center employees were recognized with Honoree Awards from NASA’s Space Flight Awareness Program during a March 10 ceremony in Orlando, Florida, for outstanding support of human spaceflight.
      Stennis Space Center employee Melissa Wagner of Pass Christian, Mississippi, is presented with the NASA Space Flight Awareness Program Honoree Award during a March 10 ceremony. Wagner (second from left) receives the award from (left to right): NASA astronaut Randy Bresnik, NASA Exploration Systems Development Mission Directorate Acting Associate Administrator Dr. Lori Glaze, and NASA Space Operations Mission Directorate Associate Administrator Kenneth Bowersox. NASA/Kennedy Space Center Melissa Wagner of Pass Christian, Mississippi, is a NASA contract specialist in the Office of Procurement at NASA Stennis. She received the honor for contributions to NASA’s Artemis campaign by identifying potential risks related to propulsion test efforts in support of the initiative, resulting in successful mitigation actions.
      NASA’s Stennis Space Center employee Samone Wilson of Hattiesburg, Mississippi, is presented with the NASA Space Flight Awareness Program Honoree Award during a March 10 ceremony. Wilson (second from left) receives the award from (left to right): NASA astronaut Randy Bresnik, NASA Space Operations Mission Directorate Associate Administrator Kenneth Bowersox, and NASA Exploration Systems Development Mission Directorate Acting Associate Administrator Dr. Lori Glaze.NASA/Kennedy Space Center Samone Wilson of Hattiesburg, Mississippi, is a NASA public affairs specialist in the Office of Communications at NASA Stennis. She received the honor for her work in telling others about NASA and NASA Stennis activities and missions.
      Timothy Miller of Pearl River, Louisiana, is a senior drafter for Syncom Space Services at NASA Stennis. Although unable to attend the ceremony, he received the honor for contributions supporting flight systems integration, facility readiness, and cost reduction with his use of Creo Parametric modeling, a powerful 3D software.
      Madison Monti of Kiln, Mississippi, is a security support specialist for Chenega Global Protection at NASA Stennis. Although unable to attend the ceremony, she received the honor for contributions supporting the badging office at NASA Stennis to ensure a consistent, efficient, and secure process.

      NASA astronaut Randy Bresnik, Space Operations Mission Directorate Associate Administrator Kenneth Bowersox, and Exploration Systems Development Mission Directorate Acting Associate Administrator Dr. Lori Glaze presented the awards.
      Bresnik, assistant-to-the-chief of the Astronaut Office for Exploration, was selected as a NASA astronaut in 2004. He manages the development and testing of everything that will operate beyond low-Earth orbit on Artemis missions. Bresnik previously served as commander of the International Space Station for Expedition 53 and flight engineer for Expedition 52.
      In recognition of flight program contributions, honorees toured NASA’s Kennedy Space Center in Florida and viewed the SpaceX Dragon spacecraft named Endurance in conjunction with the launch of NASA’s SpaceX Crew-10.
      The spacecraft carried NASA astronauts Anne McClain and Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscomos cosmonaut Kirill Pesko to the International Space Station on March 14 as part of NASA’s Commercial Crew Program. NASA’s Space Flight Awareness Program recognizes outstanding job performances and contributions by civil service and contract employees throughout the year and focuses on excellence in quality and safety in support of human spaceflight. The Honoree Award is one of the highest honors presented to employees for their dedication to quality work and flight safety. Recipients must have contributed beyond their normal work requirements toward achieving a particular human spaceflight program goal; contributed to a major cost savings; been instrumental in developing material that increases reliability, efficiency or performance; assisted in operational improvements; or been a key player in developing a beneficial process improvement.
      For information about Silver Snoopy and other Space Flight Awareness awards, visit:
      SFA Honoree Award – NASA
      For information about NASA’s Stennis Space Center, visit:
      Stennis Space Center – NASA

      View the full article
    • By NASA
      NASA Stennis partnered with Mississippi Enterprise for Technology to host more than 100 members of the 57th Rocket Test Group on March 18-19.
      NASA Stennis partnered with Mississippi Enterprise for Technology to host more than 100 members of the 57th Rocket Test Group on March 18-19.NASA/Jason Richard The group toured the south Mississippi NASA center on March 19, learning how NASA Stennis operates as NASA’s primary, and America’s largest, rocket propulsion test site to serve the nation and commercial sector with its unique capabilities and expertise.
      NASA Stennis partnered with Mississippi Enterprise for Technology to host more than 100 members of the 57th Rocket Test Group on March 18-19.NASA/Jason Richard The day included tours of test stands and facilities hosted by NASA Stennis test complex personnel. Visits included the Fred Haise Test Stand, where NASA Stennis tests RS-25 engines to help power NASA’s Artemis missions to the Moon and beyond; the Thad Cochran Test Stand, where NASA Stennis will test NASA’s exploration upper stage for future Artemis missions; the E Test Complex, where NASA Stennis supports agency and commercial propulsion test activity; and the L3Harris Technologies (formerly Aerojet Rocketdyne) Engine Assembly Facility, where RS-25 engines are produced.
      NASA Stennis partnered with Mississippi Enterprise for Technology to host more than 100 members of the 57th Rocket Test Group on March 18-19.NASA/Jason Richard The group also received overviews from site personnel on the Rocket Propulsion Test Program Office located at NASA Stennis, on lessons learned from testing at the E Test Complex, and on the NASA Data Acquisition System developed onsite.
      NASA Stennis partnered with Mississippi Enterprise for Technology to host more than 100 members of the 57th Rocket Test Group on March 18-19.NASA/Jason Richard The Rocket Test Group originally formed in response to a congressional demand for an ongoing working group crossing agency and company boundaries. It is a volunteer organization intended to allow rocket test facility operators to come together to recommend solutions for difficult testing problems; lower testing costs by reducing time spent on solving critical issues and eliminating duplicate programs; facilitate the activation of new facilities; learn from each other by viewing different methods and touring various facilities; provide a networking opportunity for testing advice and problem solving support; and allow test facility operators to stay informed on the newest developments.
      NASA Stennis partnered with Mississippi Enterprise for Technology to host more than 100 members of the 57th Rocket Test Group on March 18-19.L3Harris TechnologiesView the full article
  • Check out these Videos

×
×
  • Create New...