Members Can Post Anonymously On This Site
Statistical Analysis Using Random Forest Algorithm Provides Key Insights into Parachute Energy Modulator System
-
Similar Topics
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
An astronaut glove designed for International Space Station spacewalks is prepped for testing in a chamber called CITADEL at NASA JPL. Conducted at temperatures as frigid as those Artemis III astronauts will see on the lunar South Pole, the testing supports next-generation spacesuit development.NASA/JPL-Caltech Engineers with NASA Johnson and the NASA Engineering and Safety Center ready an astronaut glove for insertion into the main CITADEL chamber at JPL. The team tested the glove in vacuum at minus 352 degrees Fahrenheit (minus 213 degrees Celsius).NASA/JPL-Caltech A JPL facility built to support potential robotic spacecraft missions to frozen ocean worlds helps engineers develop safety tests for next-generation spacesuits.
When NASA astronauts return to the Moon under the Artemis campaign and eventually venture farther into the solar system, they will encounter conditions harsher than any humans have experienced before. Ensuring next-generation spacesuits protect astronauts requires new varieties of tests, and a one-of-a-kind chamber called CITADEL (Cryogenic Ice Testing, Acquisition Development, and Excavation Laboratory) at NASA’s Jet Propulsion Laboratory in Southern California is helping.
Built to prepare potential robotic explorers for the frosty, low-pressure conditions on ocean worlds like Jupiter’s frozen moon Europa, CITADEL also can evaluate how spacesuit gloves and boots hold up in extraordinary cold. Spearheaded by the NASA Engineering and Safety Center, a glove testing campaign in CITADEL ran from October 2023 to March 2024. Boot testing, initiated by the Extravehicular Activity and Human Surface Mobility Program at NASA’s Johnson Space Center in Houston, took place from October 2024 to January 2025.
An astronaut boot — part of a NASA lunar spacesuit prototype, the xEMU — is readied for testing in JPL’s CITADEL. A thick aluminum plate stands in for the cold surface of the lunar South Pole, where Artemis III astronauts will confront conditions more extreme than any humans have yet experienced.NASA/JPL-Caltech In coming months, the team will adapt CITADEL to test spacesuit elbow joints to evaluate suit fabrics for longevity on the Moon. They’ll incorporate abrasion testing and introduce a simulant for lunar regolith, the loose material that makes up the Moon’s surface, into the chamber for the first time.
“We’ve built space robots at JPL that have gone across the solar system and beyond,” said Danny Green, a mechanical engineer who led the boot testing for JPL. “It’s pretty special to also use our facilities in support of returning astronauts to the Moon.”
Astronauts on the Artemis III mission will explore the Moon’s South Pole, a region of much greater extremes than the equatorial landing sites visited by Apollo-era missions. They’ll spend up to two hours at a time inside craters that may contain ice deposits potentially important to sustaining long-term human presence on the Moon. Called permanently shadowed regions, these intriguing features rank among the coldest locations in the solar system, reaching as low as minus 414 degrees Fahrenheit (minus 248 degrees Celsius). The CITADEL chamber gets close to those temperatures.
Engineers from JPL and NASA Johnson set up a test of the xEMU boot inside CITADEL. Built to prepare potential robotic explorers for conditions on ocean worlds like Jupiter’s moon Europa, the chamber offers unique capabilities that have made it useful for testing spacesuit parts.NASA/JPL-Caltech “We want to understand what the risk is to astronauts going into permanently shadowed regions, and gloves and boots are key because they make prolonged contact with cold surfaces and tools,” said Zach Fester, an engineer with the Advanced Suit Team at NASA Johnson and the technical lead for the boot testing.
Keeping Cool
Housed in the same building as JPL’s historic 10-Foot Space Simulator, the CITADEL chamber uses compressed helium to get as low as minus 370 F (minus 223 C) — lower than most cryogenic facilities, which largely rely on liquid nitrogen. At 4 feet (1.2 meters) tall and 5 feet (1.5 meters) in diameter, the chamber is big enough for a person to climb inside.
An engineer collects simulated lunar samples while wearing the Axiom Extravehicular Mobility Unit spacesuit during testing at NASA Johnson in late 2023. Recent testing of existing NASA spacesuit designs in JPL’s CITADEL chamber will ultimately support de-velopment of next-generation suits being built by Axiom Space.Axiom Space More important, it features four load locks, drawer-like chambers through which test materials are inserted into the main chamber while maintaining a chilled vacuum state. The chamber can take several days to reach test conditions, and opening it to insert new test materials starts the process all over again. The load locks allowed engineers to make quick adjustments during boot and glove tests.
Cryocoolers chill the chamber, and aluminum blocks inside can simulate tools astronauts might grab or the cold lunar surface on which they’d walk. The chamber also features a robotic arm to interact with test materials, plus multiple visible-light and infrared cameras to record operations.
Testing Extremities
The gloves tested in the chamber are the sixth version of a glove NASA began using in the 1980s, part of a spacesuit design called the Extravehicular Mobility Unit. Optimized for spacewalks at the International Space Station, the suit is so intricate it’s essentially a personal spacecraft. Testing in CITADEL at minus 352 F (minus 213 C) showed the legacy glove would not meet thermal requirements in the more challenging environment of the lunar South Pole. Results haven’t yet been fully analyzed from boot testing, which used a lunar surface suit prototype called the Exploration Extravehicular Mobility Unit. NASA’s reference design of an advanced suit architecture, this spacesuit features enhanced fit, mobility, and safety.
In addition to spotting vulnerabilities with existing suits, the CITADEL experiments will help NASA prepare criteria for standardized, repeatable, and inexpensive test methods for the next-generation lunar suit being built by Axiom Space — the Axiom Extravehicular Mobility Unit, which NASA astronauts will wear during the Artemis III mission.
“This test is looking to identify what the limits are: How long can that glove or boot be in that lunar environment?” said Shane McFarland, technology development lead for the Advanced Suit Team at NASA Johnson. “We want to quantify what our capability gap is for the current hardware so we can give that information to the Artemis suit vendor, and we also want to develop this unique test capability to assess future hardware designs.”
In the past, astronauts themselves have been part of thermal testing. For gloves, an astronaut inserted a gloved hand into a chilled “glove box,” grabbed a frigid object, and held it until their skin temperature dropped as low as 50 F (10 C). McFarland stressed that such human-in-the-loop testing remains essential to ensuring future spacesuit safety but doesn’t produce the consistent data the team is looking for with the CITADEL testing.
To obtain objective feedback, the CITADEL testing team used a custom-built manikin hand and foot. A system of fluid loops mimicked the flow of warm blood through the appendages, while dozens of temperature and heat flux sensors provided data from inside gloves and boots.
“By using CITADEL and modern manikin technology, we can test design iterations faster and at much lower cost than traditional human-in-the-loop testing,” said Morgan Abney, NASA technical fellow for Environmental Control and Life Support, who conceived the glove testing effort. “Now we can really push the envelope on next-generation suit designs and have confidence we understand the risks. We’re one step closer to landing astronauts back on the Moon.”
Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.
Houston, We Have a Podcast: next-generation spacesuits Why NASA’s Perseverance rover carries spacesuit materials News Media Contact
Melissa Pamer
Jet Propulsion Laboratory, Pasadena, Calif.
626-314-4928
melissa.pamer@jpl.nasa.gov
2025-060
Share
Details
Last Updated Apr 24, 2025 Related Terms
Artemis 3 Earth's Moon Exploration Systems Development Mission Directorate Jet Propulsion Laboratory NASA Engineering & Safety Center Academy Spacesuits xEVA & Human Surface Mobility Explore More
3 min read NASA’s Curiosity Rover May Have Solved Mars’ Missing Carbonate Mystery
Article 7 days ago 4 min read NASA Aims to Fly First Quantum Sensor for Gravity Measurements
Researchers from NASA’s Jet Propulsion Laboratory in Southern California, private companies, and academic institutions are…
Article 1 week ago 3 min read Michael Ciancone Builds a Lasting Legacy in Human Spaceflight
Article 1 week ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
5 Min Read Planetary Alignment Provides NASA Rare Opportunity to Study Uranus
Artist's illustration showing a distant star going out of sight as it is eclipsed by Uranus – an event known as a planetary stellar occultation. Credits: NASA/Advanced Concepts Laboratory When a planet’s orbit brings it between Earth and a distant star, it’s more than just a cosmic game of hide and seek. It’s an opportunity for NASA to improve its understanding of that planet’s atmosphere and rings. Planetary scientists call it a stellar occultation and that’s exactly what happened with Uranus on April 7.
Observing the alignment allows NASA scientists to measure the temperatures and composition of Uranus’ stratosphere – the middle layer of a planet’s atmosphere – and determine how it has changed over the last 30 years since Uranus’ last significant occultation.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
This rendering demonstrates what is happening during a stellar occultation and illustrates an example of the light curve data graph recorded by scientists that enables them to gather atmospheric measurements, like temperature and pressure, from Uranus as the amount of starlight changes when the planet eclipses the star.NASA/Advanced Concepts Laboratory “Uranus passed in front of a star that is about 400 light years from Earth,” said William Saunders, planetary scientist at NASA’s Langley Research Center in Hampton, Virginia, and science principal investigator and analysis lead, for what NASA’s team calls the Uranus Stellar Occultation Campaign 2025. “As Uranus began to occult the star, the planet’s atmosphere refracted the starlight, causing the star to appear to gradually dim before being blocked completely. The reverse happened at the end of the occultation, making what we call a light curve. By observing the occultation from many large telescopes, we are able to measure the light curve and determine Uranus’ atmospheric properties at many altitude layers.”
We are able to measure the light curve and determine Uranus' atmospheric properties at many altitude layers.
William Saunders
Planetary Scientist at NASA's Langley Research Center
This data mainly consists of temperature, density, and pressure of the stratosphere. Analyzing the data will help researchers understand how the middle atmosphere of Uranus works and could help enable future Uranus exploration efforts.
To observe the rare event, which lasted about an hour and was only visible from Western North America, planetary scientists at NASA Langley led an international team of over 30 astronomers using 18 professional observatories.
Kunio Sayanagi, NASA’s principal investigator for the Uranus Stellar Occultation Campaign 2025, meeting virtually with partners and observing data from the Flight Mission Support Center at NASA’s Langley Research Center in Hampton, Virginia during Uranus’ stellar occultation event on April 7, 2025.NASA/Dave MacDonnell “This was the first time we have collaborated on this scale for an occultation,” said Saunders. “I am extremely grateful to each member of the team and each observatory for taking part in this extraordinary event. NASA will use the observations of Uranus to determine how energy moves around the atmosphere and what causes the upper layers to be inexplicably hot. Others will use the data to measure Uranus’ rings, its atmospheric turbulence, and its precise orbit around the Sun.”
Knowing the location and orbit of Uranus is not as simple as it sounds. In 1986, NASA’s Voyager 2 spacecraft became the first and only spacecraft to fly past the planet – 10 years before the last bright stellar occultation occured in 1996. And, Uranus’ exact position in space is only accurate to within about 100 miles, which makes analyzing this new atmospheric data crucial to future NASA exploration of the ice giant.
These investigations were possible because the large number of partners provided many unique views of the stellar occultation from many different instruments.
NASA planetary scientist William Saunders and Texas A&M University research assistant Erika Cook in the control room of the McDonald Observatory’s Otto Struve Telescope in Jeff Davis County, Texas, during the Uranus stellar occultation on April 7, 2025.Joshua Santana Emma Dahl, a postdoctoral scholar at Caltech in Pasadena, California, assisted in gathering observations from NASA’s Infrared Telescope Facility (IRTF) on the summit of Mauna Kea in Hawaii – an observatory first built to support NASA’s Voyager missions.
“As scientists, we do our best work when we collaborate. This was a team effort between NASA scientists, academic researchers, and amateur astronomers,” said Dahl. “The atmospheres of the gas and ice giant planets [Jupiter, Saturn, Uranus, and Neptune] are exceptional atmospheric laboratories because they don’t have solid surfaces. This allows us to study cloud formation, storms, and wind patterns without the extra variables and effects a surface produces, which can complicate simulations very quickly.”
On November 12, 2024, NASA Langley researchers and collaborators were able to do a test run to prepare for the April occultation. Langley coordinated two telescopes in Japan and one in Thailand to observe a dimmer Uranus stellar occultation only visible from Asia. As a result, these observers learned how to calibrate their instruments to observe stellar occultations, and NASA was able to test its theory that multiple observatories working together could capture Uranus’ big event in April.
Researchers from the Paris Observatory and Space Science Institute, in contact with NASA, also coordinated observations of the November 2024 occultation from two telescopes in India. These observations of Uranus and its rings allowed the researchers, who were also members of the April 7 occultation team, to improve the predictions about the timing on April 7 down to the second and also improved modeling to update Uranus’ expected location during the occultation by 125 miles.
This image of Uranus from NIRCam (Near-Infrared Camera) on NASA’s James Webb Space Telescope exquisitely captures Uranus’s seasonal north polar cap and dim inner and outer rings. This Webb image also shows 9 of the planet’s 27 moons – clockwise starting at 2 o’clock, they are: Rosalind, Puck, Belinda, Desdemona, Cressida, Bianca, Portia, Juliet, and Perdita.NASA, ESA, CSA, STScI Uranus is almost 2 billion miles away from Earth and has an atmosphere composed of primarily hydrogen and helium. It does not have a solid surface, but rather a soft surface made of water, ammonia, and methane. It’s called an ice giant because its interior contains an abundance of these swirling fluids that have relatively low freezing points. And, while Saturn is the most well-known planet for having rings, Uranus has 13 known rings composed of ice and dust.
Over the next six years, Uranus will occult several dimmer stars. NASA hopes to gather airborne and possibly space-based measurements of the next bright Uranus occultation in 2031, which will be of an even brighter star than the one observed in April.
For more information on NASA’s Uranus Stellar Occultation Campaign 2025:
https://science.larc.nasa.gov/URANUS2025
Karen Fox / Molly Wasser
Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Charles Hatfield
Langley Research Center, Hampton, Virginia
757-262-8289
charles.g.hatfield@nasa.gov
About the Author
Charles G. Hatfield
Science Public Affairs Officer, NASA Langley Research Center
Share
Details
Last Updated Apr 22, 2025 Related Terms
General Ice Giants Langley Research Center Planetary Science Division Uranus Explore More
4 min read NASA Tests Ultralight Antennas to Benefit Future National Airspace
Article 7 hours ago 3 min read Celebrating Earth as Only NASA Can
Article 1 day ago 3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft
Article 5 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
4 min read
Entrepreneurs Challenge Winner PRISM is Using AI to Enable Insights from Geospatial Data
PRISM’s platform uses AI segmentation to identify and highlight residential structures in a neighborhood. NASA sponsored Entrepreneurs Challenge events in 2020, 2021, and 2023 to invite small business start-ups to showcase innovative ideas and technologies with the potential to advance the agency’s science goals. To potentially leverage external funding sources for the development of innovative technologies of interest to NASA, SMD involved the venture capital community in Entrepreneurs Challenge events. Challenge winners were awarded prize money, and in 2023 the total Entrepreneurs Challenge prize value was $1M. Numerous challenge winners have subsequently refined their products and/or received funding from NASA and external sources (e.g., other government agencies or the venture capital community) to further develop their technologies.
One 2023 Entrepreneurs Challenge winner, PRISM Intelligence (formerly known as Pegasus Intelligence and Space), is using artificial intelligence (AI) and other advances in computer vision to create a new platform that could provide geospatial insights to a broad community.
Every day, vast amounts of remote sensing data are collected through satellites, drones, and aerial imagery, but for most businesses and individuals, accessing and extracting meaningful insights from this data is nearly impossible.
The company’s product—Personal Real-time Insight from Spatial Maps, a.k.a. PRISM—is transforming geospatial data into an easy-to-navigate, queryable world. By leveraging 3D computer vision, geospatial analytics, and AI-driven insights, PRISM creates photorealistic, up-to-date digital environments that anyone can interact with. Users can simply log in and ask natural-language questions to instantly retrieve insights—no advanced Geographic Information System (GIS) expertise is required.
For example, a pool cleaner looking for business could use PRISM to search for all residential pools in a five-mile radius. A gardener could identify overgrown trees in a community. City officials could search for potholes in their jurisdiction to prioritize repairs, enhance public safety, and mitigate liability risks. This broad level of accessibility brings geospatial intelligence out of the hands of a few and into everyday decision making.
The core of PRISM’s platform uses radiance fields to convert raw 2D imagery into high-fidelity, dynamic 3D visualizations. These models are then enhanced with AI-powered segmentation, which autonomously identifies and labels objects in the environment—such as roads, vehicles, buildings, and natural features—allowing for seamless search and analysis. The integration of machine learning enables PRISM to refine its reconstructions continuously, improving precision with each dataset. This advanced processing ensures that the platform remains scalable, efficient, and adaptable to various data sources, making it possible to produce large-scale, real-time digital twins of the physical world.
The PRISM platform’s interface showcasing a 3D digital twin of California State Polytechnic University, Pomona, with AI-powered search and insights. “It’s great being able to push the state of the art in this relatively new domain of radiance fields, evolving it from research to applications that can impact common tasks. From large sets of images, PRISM creates detailed 3D captures that embed more information than the source pictures.” — Maximum Wilder-Smith, Chief Technology Officer, PRISM Intelligence
Currently the PRISM platform uses proprietary data gathered from aerial imagery over selected areas. PRISM then generates high-resolution digital twins of cities in select regions. The team is aiming to eventually expand the platform to use NASA Earth science data and commercial data, which will enable high-resolution data capture over larger areas, significantly increasing efficiency, coverage, and update frequency. PRISM aims to use the detailed multiband imagery that NASA provides and the high-frequency data that commercial companies provide to make geospatial intelligence more accessible by providing fast, reliable, and up-to-date insights that can be used across multiple industries.
What sets PRISM apart is its focus on usability. While traditional GIS platforms require specialized training to use, PRISM eliminates these barriers by allowing users to interact with geospatial data through a frictionless, conversational interface.
The impact of this technology could extend across multiple industries. Professionals in the insurance and appraisal industries have informed the company how the ability to generate precise, 3D assessments of properties could streamline risk evaluations, reduce costs, and improve accuracy—replacing outdated or manual site visits. Similarly, local governments have indicated they could potentially use PRISM to better manage infrastructure, track zoning compliance, and allocate resources based on real-time, high-resolution urban insights. Additionally, scientists could use the consistent updates and layers of three-dimensional data that PRISM can provide to better understand changes to ecosystems and vegetation.
As PRISM moves forward, the team’s focus remains on scaling its capabilities and expanding its applications. Currently, the team is working to enhance the technical performance of the platform while also adding data sources to enable coverage of more regions. Future iterations will further improve automation of data processing, increasing the speed and efficiency of real-time 3D reconstructions. The team’s goal is to expand access to geospatial insights, ensuring that anyone—from city planners to business owners—can make informed decisions using the best possible data.
PRISM Intelligence founders Zachary Gaines, Hugo Delgado, and Maximum Wilder-Smith in their California State Polytechnic University, Pomona lab, where the company was first formed. Share
Details
Last Updated Apr 21, 2025 Related Terms
Earth Science Division Earth Science Science-enabling Technology Technology Highlights Explore More
4 min read NASA Aims to Fly First Quantum Sensor for Gravity Measurements
Article
7 days ago
4 min read GLOBE Mission Earth Supports Career Technical Education
Article
2 weeks ago
4 min read New York Math Teacher Measures Trees & Grows Scientists with GLOBE
Article
2 weeks ago
View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ECF 2024 Quadchart McGuirk.pdf
Christopher McGuirk
Colorado School of Mines
This project will investigate and develop improved storage methods for the fuels needed to generate electrical power in places where sunlight is not available. The effort will focus on particularly tailored materials called Metal Oxide Frameworks, or MOFs, that can be used to store methane and oxygen. The methane and oxygen can be reacted in a solid oxide fuel cell to generate electricity, and storing them in a MOF could potentially result in significant mass and cost savings over traditional storage tanks which also require active pressure and thermal regulation. The team will use a number of computational and experimental tools to develop a MOF structure suitable for this application.
Back to ECF 2024 Full List
Share
Details
Last Updated Apr 18, 2025 EditorLoura Hall Related Terms
Early Career Faculty (ECF) Space Technology Research Grants View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ECF 2024 Quadchart Oguri.pdf
Kenshiro Oguri
Purdue University
This project will investigate one of the key fundamental challenges associated with directed-energy light-sailing technology, similar to solar sails but powered by a laser beam pointed at the sail instead of by the sun. The effort will first mathematically model, then design, build, and test a prototype diffractive light sail. The three-dimensional, origami-inspired light sail could potentially unlock higher thrust, passive beam riding stability, and higher maneuverability via its ability to transform its shape.
Back to ECF 2024 Full List
Share
Details
Last Updated Apr 18, 2025 EditorLoura Hall Related Terms
Early Career Faculty (ECF) Space Technology Research Grants View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.